二维空间的抛物型方程-含时间项的PDE差分法

35 篇文章 18 订阅 ¥199.90 ¥299.90
本文探讨了二维空间抛物型方程的解法,重点关注使用迭代法来解决含时间项的偏微分方程(PDE)。文章提到了四种不同的差分格式:不稳定且不可用的向前欧拉格式、向后欧拉格式、BDF方法以及CN(Crank-Nicolson)方法。特别地,矩阵迭代在向后欧拉和CN格式中被详细阐述。
摘要由CSDN通过智能技术生成

使用迭代法求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

向前欧拉格式(注意,不稳定,不可用)

import numpy as np
import matplotlib.pyplot as plt
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
二维抛物方程预-校格式(Petrov-Galerkin预处理)通常用于求解偏微分方程PDEs)中的线性或非线性问题,特别是那些涉及时间依赖和空间复杂性的方程。这种方法结合了有限元素法(FEM)和 galerkin 概念,常用于数值计算中。 在二维抛物方程的预-校格式中,过程大致分为以下几个步骤: 1. **离散化**:首先,我们将连续的二维空间划分为多个子区域(元素),每个元素内用一个简单的函数(如多式或正弦函数)近似。这一步通常使用有限元基函数。 2. **弱形式**:将偏微分方程转化为弱形式,这意味着方程在每个元素上乘以一个测试函数并积分,这样可以将问题转换为矩阵形式,更便于计算。 3. **预处理**(Petrov-Galerkin):这里的关键在于选择合适的测试函数(也称为权重函数)和试函数。预处理包括: - 选择适当的正交性条件,使得测试函数和有限元基函数在每个元素上是正交的。这有助于简化计算,因为这会导致系数矩阵是对称的。 - 应用边界条件,可能需要对有限元的边界进行特定的处理,以保证解决方案的正确性。 4. **列主元方法(Row-reduction)**:为了提高矩阵的稀疏性和计算效率,预处理常常涉及到列主元方法,这可以简化求解过程,特别是在大规模计算中。 5. **迭代求解**:使用预处理后的矩阵和初始条件,应用线性代数算法(如直接求解器或迭代方法)求解系统。 6. **后处理**:得到解之后,可能还需要进行后处理,如插值、平滑或其他可视化操作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galerkin码农选手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值