NS方程求解
文章平均质量分 95
这里放的是常见的PINN,firedrake求解NS方程的代码,如果想查看相关博客,谨慎订阅,本人不定期更新,或者在知乎上搜索NS方程求解,firedrake,PINN可以搜到本人的一个代码,不过效果很差
Galerkin码农选手
这个作者很懒,什么都没留下…
展开
-
深度学习求解一维burgers方程和Galerkin求解泊松方程
{ut+uux−(0.01/π)uxx=0,x∈[−1,1],t∈[0,0.99],u(0,x)=−sin(πx),u(t,−1)=u(t,1)=0.\left\{\begin{array}{l}u_t+u u_x-(0.01 / \pi) u_{x x}=0, \quad x \in[-1,1], \quad t \in[0,0.99], \\ u(0, x)=-\sin (\pi x), \\ u(t,-1)=u(t, 1)=0 .\end{array}\right.⎩⎨⎧ut+uux−(0.0原创 2023-04-09 09:51:42 · 1493 阅读 · 1 评论 -
firedrake求解NS方程
bumpkflow.py还是这个区域,现在考虑NS方程,其中γ=1/50,f0=0,f1=0,g0=2.5∗(1−y2),g1=0\gamma=1/50,f_0=0,f_1=0,g_0=2.5*(1-y^2),g_1=0γ=1/50,f0=0,f1=0,g0=2.5∗(1−y2),g1=0原创 2022-05-06 19:50:15 · 1113 阅读 · 0 评论 -
firedrake创建mesh和求解具体问题
界面问题−∇⋅(σ∇u)+u=5,Ω-\nabla \cdot(\sigma \nabla u) + u = 5,\Omega−∇⋅(σ∇u)+u=5,Ωu∣∂Ω1=0u|_{\partial \Omega_1} = 0u∣∂Ω1=0[σ∇u⋅n]=3,in∂Ω2[\sigma\nabla u \cdot n] = 3,in \partial \Omega_2[σ∇u⋅n]=3,in∂Ω2∂Ω1\partial \Omega_1∂Ω1为矩形边界∂Ω2\partial \Omega_2∂Ω2原创 2022-05-06 10:39:58 · 436 阅读 · 0 评论 -
NS方程求解-PointNet和升维思想(效果很差)
PointNet求解NS方程参考文献:Kashefi, A. , and T. Mukerji . “Physics-Informed PointNet: A Deep Learning Solver for Steady-State Incompressible Flows and Thermal Fields on Multiple Sets of Irregular Geometries.” (2022).PointNet网络的特点在于中间通过pool提取过一次全局特征,这个特点导致一个问题。原创 2022-04-14 11:27:45 · 2544 阅读 · 0 评论 -
NS方程求解-NSFnet
NSFnet求解CVD正问题参考文献: Yang, H. , F. N. Hwang , and X. C. Cai . “NONLINEAR PRECONDITIONING TECHNIQUES FOR FULL-SPACE LAGRANGE-NEWTON SOLUTION OF PDE-CONSTRAINED OPTIMIZATION PROBLEMS *.” Siam Journal on entific Computing (2016).其中γ=0.01,Re=1,Pr=0.72,Gr=1e原创 2022-04-14 11:13:58 · 2462 阅读 · 0 评论 -
神经网络求解NS方程
问题引出−ν∇2u+u⋅∇u+∇p=f in Ω∇⋅u=0 in Ωu=g on ∂\begin{aligned}-\nu \nabla^{2} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p &=\boldsymbol{f} & & \text { in } \Omega \\\nabla \cdot \boldsymbol{u}原创 2021-03-22 18:54:48 · 2332 阅读 · 3 评论 -
NN求解NS方程进一步探讨
检验函数空间的选取前面的NS方程选取的检验函数都是一个一个基函数为模板,然后进行对应的缩放得到的,这个我们打印出所有的inset.v,inset.vx会发现里面的元素是一样的,其实很容易理解,当我们进行缩放以后,4个积分点相对于网格点的位置没变,所以取值应该一样。有这个思路以后,我们随机生成一组数,把这组数看成是我们的基函数的取值。为了方便说明,本人举一个例子:ψ(x,y)={(1−x)∗(1−y),0≤x≤1,0≤y≤1,(1+x)∗(1−y),−1≤x≤0,0≤y≤1,(1+x)∗(1+y),−1原创 2021-03-26 15:55:48 · 1130 阅读 · 0 评论 -
pytorch实现NS方程求解-基础PINN
问题描述Kovasznay problem参考文献:Dockhorn, T. . “A Discussion on Solving Partial Differential Equations using Neural Networks.” (2019).{−νΔu+uux+vuy+px=f1,−νΔv+uvx+vvy+py=f2,ux+vy=0,u∣∂Ω=u0,v∣∂Ω=v0.\left\{\begin{array}{l}-\nu \Delta u + uu_x + v u_y + p_x = f_原创 2022-04-14 10:59:15 · 7513 阅读 · 17 评论