数组分割问题(另一种说法是交换两个数组元素使两个数组和的差最小)

一、数组分割问题:(原帖见http://www.cppblog.com/baby-fly/archive/2009/09/24/92392.html

题目概述:有一个没有排序,元素个数为2N的正整数数组。要求把它分割为元素个数为N的两个数组,并使两个子数组的和最接近。
假设数组A[1..2N]所有元素的和是SUM。模仿动态规划解0-1背包问题的策略,令S(k, i)表示前k个元素中任意i个元素的和的集合。显然:
S(k, 1) = {A[i] | 1<= i <= k}
S(k, k) = {A[1]+A[2]+…+A[k]}
S(k, i) = S(k-1, i) U {A[k] + x | x属于S(k-1, i-1) }
按照这个递推公式来计算,最后找出集合S(2N, N)中与SUM最接近的那个和,这便是答案。这个算法的时间复杂度是O(22N).
因为这个过程中只关注和不大于SUM/2的那个子数组的和。所以集合中重复的和以及大于SUM/2的和都是没有意义的。把这些没有意义的和剔除掉,剩下的有意义的和的个数最多就是SUM/2个。所以,我们不需要记录S(2N,N)中都有哪些和,只需要从SUM/2到1遍历一次,逐个询问这个值是不是在S(2N,N)中出现,第一个出现的值就是答案。我们的程序不需要按照上述递推公式计算每个集合,只需要为每个集合设一个标志数组,标记SUM/2到1这个区间中的哪些值可以被计算出来。关键代码如下:

for(i = 0; i < N+1; i++)  
    for(j = 0; j < sum/2+1; j++)  
        flag[i][j] = false;  
flag[0][0] = true;  
for(int k = 1; k <= 2*N; k++) {  
    for(i = k > N ? N : k; i >= 1; i--) {  
        //两层外循环是遍历集合S(k,i)  
        for(j = 0; j <= sum/2; j++) {  
            if(j >= A[k] && flag[i-1][j-A[k]])  
                flag[i][j] = true;  
        }  
    }  
}  
for(i = sum/2; i >= 0; i--) {  
    if(flag[N][i]) {  
        cout << "minimum delta is " << abs(2*i - sum) << endl;  
        break;  
    }  
 
二、交换两个数组元素使两个数组和的差最小:(http://blog.csdn.net/kittyjie/archive/2009/07/28/4386742.aspx)

今天又看见了这个题目,好像上次是李灾跟我说腾讯面他的时候问了这个问题的。想了半天,在网上也看了半天,发现一个不错的算法,先帖出来:^ ^

 /*

    有两个数组a,b,大小都为n,数组元素的值任意整形数,无序;
    要求:通过交换a,b中的元素,使[数组a元素的和]与[数组b元素的和]之间的差最小。

*/

/*
    求解思路:

    当前数组a和数组b的和之差为
    A = sum(a) - sum(b)

    a的第i个元素和b的第j个元素交换后,a和b的和之差为
    A' = sum(a) - a[i] + b[j] - (sum(b) - b[j] + a[i])
           = sum(a) - sum(b) - 2 (a[i] - b[j])
           = A - 2 (a[i] - b[j])
    设x = a[i] - b[j]

    |A| - |A'| = |A| - |A-2x|

    假设A > 0,

    当x 在 (0,A)之间时,做这样的交换才能使得交换后的a和b的和之差变小,x越接近A/2效果越好,

    如果找不到在(0,A)之间的x,则当前的a和b就是答案。

    所以算法大概如下:

    在a和b中寻找使得x在(0,A)之间并且最接近A/2的i和j,交换相应的i和j元素,重新计算A后,重复前面的步骤直至找不到(0,A)之间的x为止。

*/

 把算法大概实现了一下,程序如下:

 int  test( float  a[],  float  b[],  int  n)
 {
      float  sumA, sumB;  // sumA为数组a总和,sumB为数组b总和
      float  sum_diff, num_diff;  // sum_diff为a,b总和差, num_diff为a,b中各选的两个数之差
      float  temp1, temp2;     // temp1为 每轮sum_diff/2, temp2为每轮所选两个数之差于temp1最接近的那个
      int  i, j;
      float  temp;  // 用于对调a,b间数
      int  tempi, tempj;     // 每轮所选两个数之差于temp1最接近的那组数
     unsigned  int  flag_sum  =   0 , flag_num  =   0 ;   // flag_sum为1, sumA大于sumB; flag_num为1, 此轮存在两个数之差小于sum_diff
 
 
        
 
      while ( 1 ){
 
          // 算出a,b数组和
         sumA  =   0 ;
         sumB  =   0 ;
          for (i = 0 ;i  <  n;i ++ )
         {
             sumA  +=  a[i];
             sumB  +=  b[i];
         }
 
          if (sumA  >=  sumB){
             sum_diff  =  sumA  -  sumB;
             flag_sum  =   1 ;
         }
          else
             sum_diff  =  sumB  -  sumA;   
    
         temp1  =  sum_diff / 2 ;
         temp2  =  temp1;
         tempi  =   0 ;
         tempj  =   0 ;   
    
          // 找出a,b间差值最接近sum_diff/2的那一对数
           if (flag_sum  ==   1 ){     // sumA > sumB
              for (i = 0 ; i  <  n; i ++ )
                  for (j = 0 ; j  <  n; j ++ )
                
                      if (a[i]  >  b[j]){
                         num_diff  =  a[i]  -  b[j];
                          if (num_diff  <  sum_diff){
                             flag_num  = 1 ;
                              if (num_diff  >=  temp1){
                                  if (num_diff - temp1  <  temp2){
                                     temp2  =  num_diff - temp1;
                                     tempi  =  i;
                                     tempj  =  j;
                                 }
                             }
                              else {
                                  if (temp1  -  num_diff  <  temp2){
                                     temp2  =  temp1  -  num_diff;
                                     tempi  =  i;
                                     tempj  =  j;
                                 }
                             }
                         }
                     }
         }
          else {
              for (i = 0 ; i  <  n; i ++ )
                  for (j = 0 ; j  <  n; j ++ )
                
                      if (a[i]  <  b[j]){
                         num_diff  =  b[j]  -  a[i];
                          if (num_diff  <  sum_diff){
                             flag_num  = 1 ;
                              if (num_diff  >=  temp1){
                                  if (num_diff - temp1  <  temp2){
                                     temp2  =  num_diff - temp1;
                                     tempi  =  i;
                                     tempj  =  j;
                                 }
                             }
                              else {
                                  if (temp1  -  num_diff  <  temp2){
                                     temp2  =  temp1  -  num_diff;
                                     tempi  =  i;
                                     tempj  =  j;
                                 }
                             }
                          }
                     }
         }
 
          if (flag_num  ==   0 )
              break ;
 
         temp  =  a[tempi];
         a[tempi]  =  b[tempj];
         b[tempj]  =  temp;
    
         flag_num  =   0 ;
         flag_sum  =   0 ;
     }
        
      for (i = 0 ; i  <  n;i ++ )
         printf( " %f/t " ,a[i]);
 
     printf( " /n " );
 
      for (i = 0 ; i  <  n;i ++ )
          printf( " %f/t " ,b[i]);
 
      printf( " /n " );   
     
       return   0 ;
 }
 
int  main( int  argc,  char   * argv[])
{
 
       float  a[ 3 ]  =  { 4 , 5 , 12 };
       float  b[ 3 ]  =  { 1 , 2 , 3 };
 
     test(a, b,  3 );
 
       return   0 ;
}

 
发布了37 篇原创文章 · 获赞 7 · 访问量 11万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览