windows python多台机器分布式进程

注意细节:关闭防火墙,同一网段

分布式进程

python的 mutiprocessing 模块支持多进程,且其子模块managers 支持分布式,在多台机器上运行。而Thread只能分布在同一台机器的多个CPU上。
发送任务的进程 和处理任务的进程,分布在两台机器上。
注意:同一台机器上写多进程时,Queue队列可以直接使用,但是分布式多进程条件下,添加任务刅Queue不可以直接对原始的task_queue 操作。需要通过封装,继承类BaseManager,获得的新Queue添加。

**

代码

**
task_master.py 和 task_worker.py`

#_*_ conding:utf-8 _*_
#task_master.py
import random,time,queue
from multiprocessing.managers import BaseManager
from multiprocessing import freeze_support

task_queue =  queue.Queue()  # 发送任务的队列:
result_queue = queue.Queue() # 接收结果的队列:
class QueueManager(BaseManager):  # 从BaseManager继承的	
	pass
# windows下运行
def return_task_queue():
    global task_queue
    return task_queue  # 返回发送任务队列
def return_result_queue ():
    global result_queue
    return result_queue # 返回接收结果队列
def test():
    # 把两个Queue都注册到网络上, callable参数关联了Queue对象,它们用来进行进程间通信,交换对象
    QueueManager.register('get_task_queue', callable=return_task_queue)
    QueueManager.register('get_result_queue', callable=return_result_queue)
    # 绑定端口5000, 设置验证码'abc':
    #manager = QueueManager(address=('', 5000), authkey=b'abc')
    # windows需要写ip地址
    manager = QueueManager(address=('198.8.8.8', 5000), authkey=b'abc')
    manager.start()  # 启动Queue:
    # 获得通过网络访问的Queue对象:
    task = manager.get_task_queue()
    result = manager.get_result_queue()
    for i in range(10):   # 放几个任务进去:
        n = random.randint(0, 10000)
        print('Put task %d...' % n)
        task.put(n)
    # 从result队列读取结果:
    print('Try get results...')
    for i in range(10):
        # 这里加了异常捕获
        try:
            r = result.get(timeout=5)
            print('Result: %s' % r)
        except queue.Empty:
             print('result queue is empty.')
    # 关闭:
    manager.shutdown()
    print('master exit.')
if __name__=='__main__':
    freeze_support()
    print('start!')
    test()

在task_worker.py中:

# task_worker.py

import time, sys, queue
from multiprocessing.managers import BaseManager

# 创建类似的QueueManager:
class QueueManager(BaseManager):
    pass

# 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')

# 连接到服务器,也就是运行task_master.py的机器:
server_addr = '198.8.8.8'
print('Connect to server %s...' % server_addr)
# 端口和验证码注意保持与task_master.py设置的完全一致:
m = QueueManager(address=(server_addr, 5000), authkey=b'abc')
# 从网络连接:
m.connect()
# 获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,并把结果写入result队列:
for i in range(10):
    try:
        n = task.get(timeout=1)
        print('run task %d ' % n)
        r =  n*n
        time.sleep(1)
        result.put(r)
    except queue.Empty:
        print('task queue is empty.')
# 处理结束:
print('worker exit.')

知识补充

QueueManager 实现了Queue的网络访问,但由于QueueManager管理的不止一个Queue,所以需要给每个Queue的网络调用接口取名字,比如此处的get_task_queue。 task_worker.py中注册的名字必须和task_manager中注册的一致authkey也需一致。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值