【Python】Python多进程详解

1. 什么进程?

进程(Process),顾名思义,就是进行中的程序。有一句话说得好:程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体。进程是资源分配的最小单元,也就是说每个进程都有其单独的内存空间。

2. 如何创建一个进程?

Unix/Linux系统通过fork系统调用创建一个进程,但是在Windows中并没有fork调用。但是别担心,Python中内置的multiprocessing模块是跨平台的,我们可以通过对multiprocess模块中的Process类进行实例化创建一个进程对象,如:

import os
from multiprocessing import Process

def run_a_sub_proc(name):
    print(f'子进程:{name}({os.getpid()})开始...')

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    # 通过对Process类进行实例化创建一个子进程
    p = Process(target=run_a_sub_proc, args=('测试进程', ))
    p.start()
    p.join()

执行结果如下:
在这里插入图片描述
创建一个子进程

这里需要明确以下主进程和子进程。当我们通过python demo.py开始执行demo.py这个程序时,程序被赋予了声明,成为一个进程,这个进程是主进程。而在主进程执行过程,通过对Process类进行实例化创建的是子进程。

3. multiprocessing基本功能

3.1 进程启动

当通过对Process类实例化获得一个进程p以后,直接通过p.start()就可以启动该进程了。可是,在start()方法的背后,实际上有三种启动方法:

  • spawn:子进程仅继承有限的资源,适用于Unix/Linux和Windows
  • fork:子进程会继承父进程中所有的资源,仅适用于Unix/Linux
  • forkserver:创建一个单进程的服务进程,专门用来处理子进程的创建,仅适用于Unix/Linux[1]
    在这里插入图片描述
    在这里插入图片描述
    目前,对于Unix/Linux,默认的启动方法是fork;而对于Windows和MacOS系统,默认的启动方法是spawn。

3.2 join()方法

在多线程中,join()方法会使主线程进入阻塞,直到调用join()方法的子线程执行完毕。那么在多进程中,join()方法的用法是一样,即使主进程进入阻塞,直到调用join()方法的子进程执行完毕。猜猜以下两个例子的运行结果会有什么不同?

# 例一
import os, time
from multiprocessing import Process

def run_a_sub_proc(name):
    print(f'子进程:{name}({os.getpid()})开始...')
    for i in range(3):
        print(f'子进程:{name}({os.getpid()})运行中...')
        time.sleep(1)

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    p1 = Process(target=run_a_sub_proc, args=('进程-1', ))
    p2 = Process(target=run_a_sub_proc, args=('进程-2', ))
    p1.start()
    p2.start()
    p1.join()
    p2.join()
# 例二
import os, time
from multiprocessing import Process

def run_a_sub_proc(name):
    print(f'子进程:{name}({os.getpid()})开始...')
    for i in range(3):
        print(f'子进程:{name}({os.getpid()})运行中...')
        time.sleep(1)

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    p1 = Process(target=run_a_sub_proc, args=('进程-1', ))
    p2 = Process(target=run_a_sub_proc, args=('进程-2', ))
    p1.start()
    p1.join()
    p2.start()
    p2.join()

执行结果:
在这里插入图片描述
通过join方法阻塞主进程

简而言之,join()方法就是让主进程进入阻塞状态,等对应的子进程执行完毕再执行下一行,主要用于进程同步。

3.3 Pool

如果想一次性创建多个进程,可以用Pool方法(注意Pool是一个方法,不是类),如

import os, time
from multiprocessing import Process, Pool

def run_a_sub_proc(name):
    print(f'子进程:{name}({os.getpid()})开始!')
    for i in range(2):
        print(f'子进程:{name}({os.getpid()})运行中...')
        time.sleep(1)
    print(f'子进程:{name}({os.getpid()})结束!')

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    p = Pool(3)
    for i in range(1, 5):
        p.apply_async(run_a_sub_proc, args=(f"进程-{i}",))
    p.close()
    p.join()

运行结果如下
在这里插入图片描述
进程1~3结束了进程4才开始

值得注意的是,在上述代码中,进程1~3结束了进程4才开始,这是为什么呢?这是因为在p=Pool(3)中定义了每次执行的子进程个数的限制。

Pool的默认大小是你所用的电脑CPU的核数,CPU核数可通过os.cpu_count()获得。

p.join()的意思是等Pool中所有的子进程全部执行完毕再进行下一步,在调用p.join()之前需要先调用p.close()。

4 进程间通信

现在设想你需要两个进程,一个进程(接收进程)产生数据(比如从网站上爬虫,或者从websocket接收数据等),另一个进程(转发进程)对产生的数据进行处理并转发(比如计算并处理之后上传数据库,或者发送给websocket等)。这是一个非常常见的应用场景,如何把接收进程接受的数据传递给转发进程呢?直接硬写是不行的,比如下面这个错误示范

import os, time, random
from multiprocessing import Process

data: int

def recv():
    print(f'子进程:接收进程({os.getpid()})开始!')
    while True:
        global data
        # 用产生随机数的方法模拟数据的接收
        data = random.randint(1, 100)
        print(f'子进程:接收进程接收到数据{data}!')
        sleep_time = random.randint(1, 3)
        time.sleep(sleep_time)

def send():
    print(f'子进程:转发进程({os.getpid()})开始!')
    while True:
        global data
        print(f'子进程:转发进程接收到数据{data}并开始处理、转发!')

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    p1 = Process(target=recv)
    p2 = Process(target=send)
    p1.start()
    p2.start()
    p1.join()
    p2.join()

上面这个程序毫无疑问是会报错的,即便你声明了数据data是全局变量。
在这里插入图片描述
程序报错

报错的原因是:每个子进程享有独立的内存空间,接收进程产生的数据不能马上同步到转发进程中,这也就是为什么接收线程中提示“name ‘data’ is not defined”的原因。

那如何实现进程间通信呢?multiprocessing提供了两种方法:Queue和Pipe。

4.1 Queue

import os, time, random
from multiprocessing import Process, Queue

def recv(q):
    print(f'子进程:接收进程({os.getpid()})开始!')
    while True:
        # 用产生随机数的方法模拟数据的接收
        data = random.randint(1, 100)
        print(f'子进程:接收进程接收到数据{data}!')
        q.put(data)
        sleep_time = random.randint(1, 3)
        time.sleep(sleep_time)

def send(q):
    print(f'子进程:转发进程({os.getpid()})开始!')
    while True:
        # 注意:如果q里面没有数据,get()方法就会等待,直到获得一个数据并赋值给data
        data = q.get()
        print(f'子进程:转发进程接收到数据{data}并开始处理、转发!')
        time.sleep(1)

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    q = Queue()
    p1 = Process(target=recv, args=(q,))
    p2 = Process(target=send, args=(q,))
    p1.start()
    p2.start()
    p1.join()
    p2.join()

执行结果如下
在这里插入图片描述
通过Queue实现进程间通信

需要注意两点:

  • data=q.get()过程中,如果q中没有数据,并不是返回一个None给data,get()方法会进入等待状态,直到q中有数据为止;
  • queue是先进先出(FIFO)的。

4.2 Pipe

如果你创建了很多个子进程,那么其中任何一个子进程都可以对Queue进行存(put)和取(get)。但Pipe不一样,Pipe只提供两个端点,只允许两个子进程进行存(send)和取(recv)。也就是说,Pipe实现了两个子进程之间的通信。

import os, time, random
from multiprocessing import Pipe, Process

def sub_process(name, p):
    print(f'子进程:{name}({os.getpid()})开始!')
    while True:
        data_s = random.randint(1, 100)
        p.send(data_s)
        print(f'子进程:{name}发送数据:{data_s}!')
        data_r = p.recv()
        print(f'子进程:{name}接收到数据:{data_r}!')
        time.sleep(1)

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    conn_1, conn_2 = Pipe()
    p1 = Process(target=sub_process, args=("进程-1", conn_1,))
    p2 = Process(target=sub_process, args=("进程-2", conn_2,))
    p1.start()
    p2.start()
    p1.join()
    p2.join()

执行结果
在这里插入图片描述
通过Pipe实现进程间通信

注意:

  • Queue可以被多个进程调用,而Pipe只能被两个进程调用;
  • Queue是基于Pipe实现的,因此Pipe速度比Queue快很多[2]。

5.进程间数据共享

通常不鼓励进程间数据共享,因为可能会带来“竞争危害”、产生不可预知的结果。但如果有这方面的需要,在保证数据安全的基础上也是可以的。实现线程间数据共享主要有两种方法:Value/Array和Manager

5.1 Value/Array

import os, time, random
from multiprocessing import Process, Value, Array

def sub_process(name, v, arr):
    print(f'子进程:{name}({os.getpid()})开始!')
    while True:
        if name == "修改Value":
            v.value += 1            # 通过Value.value读取Value的数值
        else:
            num = random.randint(0, 2)
            arr[num] += 1
        print(f'子进程:{name}', v.value, arr[:])
        time.sleep(random.randint(1, 3))

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    v = Value("i", 0)               # i 指整数
    arr = Array("i", [1, 2, 3])     # i 指整数型组成的数组
    p1 = Process(target=sub_process, args=("修改Value", v, arr, ))
    p2 = Process(target=sub_process, args=("修改Array", v, arr, ))
    p1.start()
    p2.start()
    p1.join()
    p2.join()

执行结果:
在这里插入图片描述
通过两个子线程对数值和数组不断进行修改

5.2 Manager

Manager()方法会返回一个服务进程,这个进程专门用来维护进程间数据的共享。Manager提供的数据格式非常多,包括list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array等。

6. 进程同步

在前面提到,不鼓励在进程间实现数据共享,因为容易产生竞争危害。例如两个线程,分别对同一个数值不断地进行+1,循环200遍,那么理论上最终这个数值会变成400,然而事实并非如此,如

import os, time, random
from multiprocessing import Process, Value

def sub_process(name, v):
    print(f'子进程:{name}({os.getpid()})开始!')
    for i in range(200):
        v.value += 1

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    v = Value("i", 0)               # i 指整数
    p1 = Process(target=sub_process, args=("进程-1", v,))
    p2 = Process(target=sub_process, args=("进程-2", v,))
    p1.start()
    p2.start()
    p1.join()
    p2.join()
    print(v.value)

执行结果如下:数值并不是400,因为发生了竞争危害。
在这里插入图片描述
最终数值并不是400

解决该问题的办法就是加进程锁。

import os, time, random
from multiprocessing import Process, Value, Lock

def sub_process(name, v, lock):
    print(f'子进程:{name}({os.getpid()})开始!')
    for i in range(200):
        lock.acquire()
        v.value += 1
        lock.release()

if __name__ == '__main__':
    print(f'主进程({os.getpid()})开始...')
    v = Value("i", 0)               # i 指整数
    lock = Lock()
    p1 = Process(target=sub_process, args=("进程-1", v, lock))
    p2 = Process(target=sub_process, args=("进程-2", v, lock))
    p1.start()
    p2.start()
    p1.join()
    p2.join()
    print(v.value)

输出结果变成了预期的400:
在这里插入图片描述

最后

在学习python中有任何困难不懂的可以微信扫描下方CSDN官方认证二维码加入python交流学习
多多交流问题,互帮互助,这里有不错的学习教程和开发工具。

python兼职资源+python全套学习资料

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

四、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。在这里插入图片描述

六、Python练习题

检查学习结果。
在这里插入图片描述

七、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述
最后,千万别辜负自己当时开始的一腔热血,一起变强大变优秀。

Python中,当使用`multiprocessing`模块的`Process`类以及`spawn`启动模式创建子进程时,由于每个进程都是独立运行的,并不会共享全局变量或者直接访问其他进程的内存空间,因此一般不需要像在`fork`或`share`模式下那样去手动管理进程间通信或同步。但是,如果你确实需要在多个子进程中控制某些资源,比如数据库连接或文件操作,可以考虑以下几个步骤: 1. **进程局部锁**(如`Lock`、`RLock` 或 `Semaphore`):使用`multiprocessing`提供的锁对象来保护对共享资源的访问。每个进程获取到锁之后才能进行相关的操作,完成后释放锁让其他等待的进程有机会。 ```python from multiprocessing import Lock lock = Lock() def process_function(): with lock: # 这里是对共享资源的操作 ``` 2. **队列或管道**:你可以通过`Queue`、`Pipe`或`Manager`类创建进程间通信机制,这样在子进程中通过传递消息的方式来协调对资源的访问。 ```python from multiprocessing import Queue queue = Queue() def process_function(queue): data = queue.get() # 获取数据,然后处理... # 处理完后发送信号或更新数据回队列 queue.put(result) ``` 3. **避免使用全局状态**:如果可能的话,尽量避免在`spawn`模式下使用全局变量,因为它们在子进程中是不可见的。 总之,在`spawn`模式下,虽然不需要共享内存,但确保资源安全的方式通常依赖于进程间通信和适当的同步机制。记住,`spawn`模式的主要优点是更快的启动时间和更好的安全性,因为它并不复制整个进程堆栈。所以,在设计时要考虑这种特性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值