import numpy as np
np.random.seed(1337)
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop
# (X_train, y_train), (X_test, y_test) = mnist.load_data()
import numpy as np
path='./mnist.npz'
f = np.load(path)
X_train, y_train = f['x_train'], f['y_train']
X_test, y_test = f['x_test'], f['y_test']
f.close()
X_train = X_train.reshape(X_train.shape[0], -1) / 255
X_test = X_test.reshape(X_test.shape[0], -1) / 255
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)
model = Sequential([
Dense(32, input_dim=784),
Activation('relu'),
Dense(10),
Activation('softmax'),
])
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer=rmsprop,
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=2, batch_size=32)
loss, accuracy = model.evaluate(X_test, y_test)
print('test loss:', loss)
print('test accuracy:', accuracy)
https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/
http://www.waitingfy.com/archives/5111