Keras Classifier 分类

import numpy as np
np.random.seed(1337)

from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop


# (X_train, y_train), (X_test, y_test) = mnist.load_data()

import numpy as np
path='./mnist.npz'
f = np.load(path)
X_train, y_train = f['x_train'], f['y_train']
X_test, y_test = f['x_test'], f['y_test']
f.close()

X_train = X_train.reshape(X_train.shape[0], -1) / 255
X_test = X_test.reshape(X_test.shape[0], -1) / 255

y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)

model = Sequential([
    Dense(32, input_dim=784),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])

rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)

model.compile(optimizer=rmsprop,
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.fit(X_train, y_train, epochs=2, batch_size=32)

loss, accuracy = model.evaluate(X_test, y_test)

print('test loss:', loss)
print('test accuracy:', accuracy)

https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/
http://www.waitingfy.com/archives/5111

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瓦力冫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值