poj 3233

 

Matrix Power Series
Time Limit: 3000MS Memory Limit: 131072K
Total Submissions: 7302 Accepted: 3143

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

Source

POJ Monthly--2007.06.03, Huang, Jinsong

分析:哎。。。认真线性代数啊

转:

 

解法一

Let B=   A I  

         0 I   

 

B^(k+1) =    A^k   I+A+...+A^k 

             0          I      

 

Accepted2184K250MSG++

 

解法二

设f[n]=A^1+A^2+....A^n;

当n是偶数,f[n]=f[n/2]+f[n/2]*A^(n/2);

但n是奇数,f[n]=f[n-1]+A^(n);

我的代码(解法一加一点优化)94ms好慢啊:

 

 
代码2,网上找来的,改了一下,79ms,很短很给力~~~:
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值