一、引言

在深度学习领域,卷积神经网络(Convolutional Neural Network,CNN)凭借其强大的特征提取能力,在图像识别、目标检测、语义分割等众多任务中取得了卓越的成果 。然而,CNN 内部的工作机制往往被视为一个 “黑匣子”,模型如何从原始输入中提取特征并做出决策,对于研究者和开发者来说并不直观。
CNN 可视化技术的出现,为我们打开了了解模型内部工作原理的窗口。通过可视化,我们可以直观地看到模型在不同层提取的特征,以及图像的哪些区域对最终的分类结果起到了关键作用。这不仅有助于我们深入理解模型的学习过程,还能帮助我们诊断模型的问题、优化模型结构,提高模型的性能和可解释性。
本文将深入探讨 CNN 可视化技术,从特征图可视化入手,逐步介绍如何通过类别激活图(Class Activation Map,CAM)更直观地理解模型的决策依据,并给出基于 PyTorch 的实现代码,帮助读者更好地掌握这一技术。
二、CNN 基础与特征图
2.1 CNN 的基本原理
卷积神经网络(CNN)作为深度学习领域的核心模型之一,在计算机视觉任务中占据着举足轻重的地位 。它的设计灵感来源于生物视觉系统,通过模拟人类视觉皮层对图像的处理方式,能够自动提取图像中的关键特征,从而实现高效的图像分类、目标检测、语义分割等任务。
CNN 的核
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



