1、在数据清洗前,我们需要先查看数据概况,了解我们需要清洗的数据大概包含什么字段、每个字段下面数据范围大概如何,数据清洗常用到的函数和语法分别有:
info函数:用于了解数据总体情况,包括行数,列数,各列名称等,比如
app.info()
shape函数:用于查看数据矩阵的行和列
关于python函数中shape的解释:
shape包含在numpy库,是矩阵(ndarray)的属性,可以获取矩阵的形状(例如二维数组的行列),获取的结果是一个元组,因此相关代码如下:
import numpy as np
x = np.array([[1,2,3,4,5],[6,7,8,9,10],[10,9,8,7,6],[5,4,3]])
#输出数组的行和列数
print x.shape #结果: (4, 5)
#只输出行数
print x.shape[0] #结果: 4
#只输出列数
print x.shape[1] #结果: 5
————————————————
版权声明:本文为CSDN博主「企鹅爱吃冰淇淋」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog