- 博客(45)
- 收藏
- 关注

原创 全网最清楚:基于Matlab两个时间序列之间的交叉小波相干性
在MATLAB中实现小波相干(Wavelet Coherence)是一种强大的频域分析技术,可以帮助我们理解时间序列数据之间的相互关系,揭示不同频率下的相关性和变化趋势。本文将介绍小波相干的基本原理、在MATLAB中的实现步骤以及示例代码,帮助读者掌握这一重要的数据分析工具。
2024-05-16 16:02:35
7492
原创 基于MODIS观测的全球格点数据处理与GeoTIFF栅格化存储
这段 MATLAB 代码的目的是从 MODIS 观测火灾数据(2001-2021)创建全球 0.1° 分辨率的 GeoTIFF 栅格数据,并按年和月存储 FDI(火灾指数)和 Daynight(昼夜信息)数据。其主要创新点在于:高效的空间索引处理:利用 discretize 计算经纬度索引,确保数据正确匹配到栅格。灵活的时间分组:支持按年份和月份分别统计 FDI 和 Daynight 数据。最大化数据填充策略:使用 accumarray 按栅格计算 FDI 和 Daynight 的最大值。
2025-04-01 22:18:49
472
原创 鸡生蛋还是蛋生鸡? 基于python的CCM因果关系计算
因果推断在科学研究中起着重要的作用,尤其是在复杂系统中,例如生态学、气候学、经济学等领域。在这些领域中,了解变量之间的因果关系可以帮助我们更好地理解系统的动态行为和相互作用。传统的相关性分析并不足以揭示因果性,因为相关性不代表因果关系。为了有效地解决这一问题,Convergent Cross Mapping (CCM) 被提出作为一种基于非线性动力学理论的因果推断方法。CCM 可以用来识别时间序列数据之间的因果关系,特别是在动态复杂系统中,其中变量之间可能存在交互作用或反馈机制。
2025-03-26 17:49:58
1003
原创 MATLAB 批量移动 TIF 文件至分类文件夹
本代码用于从指定的源文件夹 (sourceFolder) 中筛选所有 .tif 文件,并根据文件名的特定关键词(Daynight 和 FDI)将其分类移动到相应的目标文件夹 (targetDaynightFolder 和 targetFDIFolder)。
2025-03-24 23:00:02
413
原创 MATLAB如何使用 readtable 优化百万级别CSV文件的读取速度
用于处理位于指定目录下的多个CSV文件,通过读取数据、处理日期列、转换分类数据、合并结果以及删除重复行,最终将处理后的数据保存为MAT文件。使用 readtable 读取数据,以提高读取效率,并通过向量化操作和逻辑索引提高代码效率。
2025-03-23 23:06:06
422
原创 Python 利用随机森林评估农业干旱的动态可预测性与关键因子
该代码的核心目的是评估农业干旱的动态可预测性,并识别影响其预测精度的关键因子。通过构建随机森林模型并进行变量重要性分析,该方法可以有效识别哪些气象、陆面状态、陆气反馈或海陆遥相关因子在农业干旱预测中起主要作用。参考文献。
2025-03-18 15:44:12
963
原创 《自然》:陆地蒸散量研究的统计失误被撤回-空间加权平均的计算方法
自然》期刊于2021年5月26日发表了一篇题为“A 10 per cent increase in global land evapotranspiration from 2003 to 2019”的论文,研究显示2003年至2019年间全球陆地蒸散量增加了10% ± 2%。该研究曾为全球陆地蒸散量研究提供了重要数据和方向,但因统计错误于2022年2月24日被撤稿。问题在于作者在计算全球平均降水量时,错误地使用了算术平均值,而非考虑纬度变化的空间加权平均值。
2025-03-17 21:52:19
1094
原创 基于Bayes-Copula方法的用于植被脆弱性评估-栅格版
基于Copula-Bayes方法,构建了一个用于植被脆弱性评估的框架,并进一步应用于栅格数据分析。通过精确评估不同干旱条件下植被的损失概率及其空间分布。
2025-02-25 12:08:12
1281
原创 气象干旱触发水文(农业)干旱的概率及其触发阈值的动态变化-贝叶斯copula模型
本文通过建立不同类型干旱传播过程的触发阈值模型,解析了在不同等级气象干旱胁迫下诱发次一级干旱类型的触发阈值。通过贝叶斯概率模型,我们推导了气象干旱与水文干旱、农业干旱、地下水干旱之间的条件概率关系,进一步明确了气象干旱引发水文干旱、农业干旱和地下水干旱的概率及其触发阈值。该模型有效揭示了气象干旱对各级干旱类型的传播机制及其动态变化,为干旱预警系统的建立和水资源管理提供了理论依据和技术支持。
2025-02-24 23:10:50
1449
原创 基于Python的Optimal Interpolation (OI) 方法实现
实现了OI方法,结合了多个背景场数据和观测数据,通过加权平均计算最优插值结果。
2025-02-15 23:02:13
561
原创 Python-基于栅格数据绘制空间分布、频率分布和剖面图
此代码提供了一种综合的可视化方法,通过栅格数据的空间分布图、剖面图和频数分布直方图,帮助用户全面了解地理空间数据的分布特征和统计特性。通过这三种可视化方式,用户可以直观地观察数据的空间模式和分布趋势,进而为进一步的数据分析提供支持。需要示例数据请关注公众号 趣品科研。
2025-02-15 22:51:31
798
转载 基于Theil-Sen斜率和Mann-Kendall检验的栅格数据趋势分析
Sen趋势分析利用时序数据计算每个像素点的Sen趋势值,判断某种变量(如蒸散、降水、温度等)的趋势(上升、下降或无变化)。使用中位数斜率方法(Sen’s Slope)来量化趋势,适用于处理非参数时间序列数据。Mann-Kendall显著性检验对趋势进行显著性检验,判断趋势是否显著(例如,在95%置信水平下)。计算Mann-Kendall统计量 SS 和对应的标准化Z值,以衡量趋势的显著性。输出结果。
2024-12-26 09:55:46
1764
1
原创 Python:使用随机森林分类器进行模型评估:ROC 曲线与 AUC 指标计算
通过 RandomForestClassifier 对数据进行训练并评估其分类性能,通过多轮训练、验证、计算 ROC 曲线 和 AUC,最终生成一张汇总图,比较不同模型的表现。这种方法广泛应用于分类任务的模型评估,特别是在需要评估多个模型或参数组合。
2024-12-05 20:01:33
939
转载 基于Python的Nino的时间序列绘制
以下是逐行添加中文注释的代码:import matplotlib.pyplot as plt # 导入matplotlib库,用于绘制图形import xarray as xr # 导入xarray库,用于处理多维数据#打开NetCDF文件并读取数据data = xr.open_dataset(r"nino3.4.nc") # 读取NetCDF文件,路径为“nino3.4.nc”nino = data[‘nino3.4’] # 获取“nino3.4”变量数据。
2024-12-02 22:30:49
185
原创 R语言*号标识显著性差异判断组间差异是否具有统计意义
此代码为研究者提供了一个完整的数据分析和可视化流程,不仅对数据进行了均值、标准差的计算,还通过显著性星号展示了各品种间的差异。通过将显著性分析结果以星号标记在图中呈现,帮助读者更清晰地了解不同变量在鸢尾花品种之间的差异,从而更好地理解数据。
2024-11-06 16:20:36
917
原创 Matlab基于经纬度点并行提取指定日期的tiff栅格位置的值
该 MATLAB 代码用于从 GeoTIFF 文件中提取基于特定地理位置(经纬度)和日期的某个点的相关数据。代码首先读取一个包含事件数据(日期、经纬度)的 Excel 文件,然后根据日期和位置尝试从存储滑坡风险数据的 GeoTIFF 文件中提取相应的数值。为了加快数据提取过程,代码使用了并行处理。
2024-11-04 11:29:37
651
原创 基于Arcpy和MATLAB批量提取指定经纬度点的栅格数据并转换为矩阵格式
这两段代码可以结合使用,实现从多个栅格文件中批量提取特定点位置的栅格值,并将提取的结果统一存储为一个矩阵格式,方便后续分析和处理。具体来说:Python代码部分利用ArcPy从指定目录下的多个栅格文件中提取在点要素文件(如.shp文件)中指定位置的栅格值。提取后的栅格值保存为新的shapefile文件,每个栅格文件对应一个shapefile文件。MATLAB代码部分从上述生成的shapefile文件中读取提取的RASTERVALU字段,将这些值逐行存储到矩阵中,确保数据格式整齐。
2024-11-01 17:52:08
728
2
原创 基于MATLAB和Geemap的多时间段指定点降水提取方法代码
本文档总结了两种不同的降水数据提取方法,分别基于 MATLAB 和 Geemap (Python) 实现。两种方法各有优缺点,适合不同的数据提取需求。这两种方法各有适用场景。若降水数据存储在本地,可以使用基于MATLAB的方法;若需要从在线数据集批量提取数据,则推荐使用geemap方法。
2024-10-30 12:02:42
476
原创 基于python的相关性和标准差的多模型评价泰勒图
作用模型对比:通过泰勒图 (Taylor Diagram) 来直观比较模型的性能,泰勒图通过标准差和相关系数来展示模型表现,并包含RMSE的等高线。标准差比率:图中每个点到原点的径向距离表示预测值与观测值的标准差之比最终的泰勒图对比了各模型相对于观测数据的表现,为模型的统计特性提供了直观的展示。
2024-10-27 10:32:29
1172
转载 基于python的nc文件偏相关度量
偏相关是一种统计度量,用于衡量两个变量之间的相关性,同时控制一个或多个其他变量的影响。在多元变量分析中,偏相关可以帮助我们了解变量间的直接关系,而不受其他变量的干扰。
2024-09-07 10:32:58
289
原创 基于python对栅格数据批量分区统计
如何基于python对tif格式的栅格数据批量进行分区统计。使用 Python 对 .tif 格式的栅格数据进行批量分区统计,通常可以通过 rasterio 和 numpy 等库来实现。具体步骤包括读取栅格数据、进行分区处理(如基于掩膜或特定区域划分),然后计算统计信息(如均值、最大值、最小值等)。
2024-09-06 11:12:01
960
原创 Python-断点续传的方式下载GPM降水数据
GPM的数据产品包括半小时降水、日降水以及月平均降水的格点资料。我们下载GPM降水数据的时候一个一个点太麻烦了,采用Python的代码下载方式,但代码也会遇到一个问题就是下载会被限制,识别为攻击导致断点。那么如何保证下载断了自动再下载呢?
2024-08-26 21:21:42
1040
原创 基于Python对三维数据做空间相关分析
读取两个 .nc 格式的气候数据文件 (SPEI.nc 和 SRI.nc),并进行相关性分析。具体来说,代码从数据文件中提取特定变量,计算这些变量与另一个变量之间的相关系数,并进行显著性检验。最终,相关系数和显著性结果以全球地图的形式可视化展示。
2024-07-21 11:25:43
507
1
原创 基于python的时空地理加权回归(GTWR)模型
时空地理加权回归(GTWR)模型是由美国科罗拉多州立大学的Andy Liaw、Stanley A. Fiel和Michael E. Bock于2008年提出的一种高级空间统计分析方法。它是在传统地理加权回归(GWR)模型的基础上发展起来的,通过结合时间和空间两个维度,提供了一种更为灵活和精确的时空数据分析手段。背景和发展传统的地理加权回归(GWR)模型主要关注地理空间上的数据变化,通过引入地理位置的权重,来刻画不同地理位置下变量之间的关系。
2024-07-21 11:05:11
8288
5
原创 基于Python的非平稳时间序列模型
平稳时间序列指的是宽平稳时间序列,就是指时间序列的均值、方差和协方差等一二阶矩存在但不随时间改变,表现为时间的常数。若三个条件有一个不成立,那么就称该序列为非平稳时间序列。包括确定性趋势时间序列和随机性趋势时间序列。要想把非平稳的时间序列转化为平稳的时间序列,需要去趋势和差分方法消除确定性趋势和随机性趋势。实际数据分析中,一阶差分提取线性趋势、二阶或三阶等地阶差分提取曲线趋势,对于含有季节趋势的数据,通常选取差分的步长等于季节的周期可以较好地提取季节信息。
2024-07-20 20:22:11
781
原创 去趋势波动分析方法-捕捉时间序列数据在不同尺度上的变化特性
总结来说,这段文字详细描述了降时间序列中分形和多分形理论的应用,并解释了传统方法的局限性和新方法(如 DFA)的优势。通过这些方法,可以更准确地分析和建模时间序列过程中的复杂性和多尺度特性。分形分析在确定阈值方面有多个好处,特别是在处理复杂和非线性时间序列数据时。捕捉多尺度特性分形分析能够捕捉时间序列数据在不同尺度上的变化特性。这意味着可以更精确地识别和定义在不同时间尺度上显现的重要阈值,这些阈值可能在传统方法中被忽视。识别非线性行为。
2024-07-17 22:33:48
2156
原创 多样化数据可视化方法的全面示例:基于Python的多样化数据可视化
本文演示了使用Python进行温度数据的多样化可视化方法。通过导入、处理和分析气象数据,我们生成了多种图表,包括直方图、核密度估计图、箱型图、小提琴图、条形图、山脊图、经验累积分布函数图和折线图。这些图表帮助我们更直观地理解温度数据的分布和变化趋势。我们利用了Seaborn、Matplotlib和Plotly等数据可视化库,以美观和易于理解的方式展示数据。
2024-07-15 11:06:44
753
原创 全网最全:基于Matlab的多维小波相干(MWC)、偏小波(PWC)与全局相干性
在前面我们提到了两个变量的交叉小波分析,一个自变量和一个因变量,但在实际中,某一变量往往受多个其它变量的影响。我们往往关注在不同尺度与时间/空间位置上,因变量如何受多个变量的影响。虽然一些多变量方法例如多变量谱一致性(multiple spectral coherence)、多变量经验模态分解(multivariate empirical mode decomposition)可以分析多变量之间在不同尺度上的相关性,但是这些方法都假设相关性特征不随时间/空间位置变化。
2024-05-16 17:18:30
3378
2
原创 如何将地理图像中目标范围值的经纬度找出来; 如何采用基于shp文件对栅格进行分区统计?
两个常见问题:如何将地理坐标图像中指定的范围值的经纬度找出来?就是根据值来找位置(经纬度),我们只有tif影像,如何来找某个值范围的经纬度?如果我们有多幅影像?如何采用基于shp文件对栅格进行分区统计,shp中有很多子区域,根据子区域进行分区统计大家都做过,GIS可以完成,但是GIS有个问题因为范围或者投影的问题会很容易报错,因此上代码强制来解决。
2024-05-02 11:01:04
499
1
原创 如何从一个文件夹中众多的文件中筛选出指定的文件到另一文件夹下
最近在处理数据的时候,遇到了一个关键问题,如何如何从众多的同类型文件中筛选指定名称的文件到另一文件下,比如我现在有按照时间序列生成的2000-2020若干天的tif数据,但我想把每年的天数据放到一个年份文件夹下。比如2000年的天数据放到2000的文件夹下。如果是小时呢?如果时间序列更长怎么办?手动此时不如不做了。这里会用到MATLAB生成指定文件名和文件夹,以及采用dos命令来批量分配,笔者亲身试验,比各位一个一个筛选省去至少若干天的时间。
2024-04-28 12:15:45
1975
1
原创 Copula 应用(2):优化藤 Copula 的桥梁结构系统地震易损性分析
该方法与现有的考虑构件类别之间相关性的桥梁系统易损性分析不同, 是将桥梁系统包含的各个构件的易损性作为藤Copula 函数中的一个变量。选用四跨有桥台混凝土桥梁结构模型, 用桥梁剩余能力模型模拟桥梁的损伤, 用提出的方法分析具有桥墩桥台和支座共 10个构件个体相关性的桥梁系统易损性, 并与目前通常采用的考虑构件类别之间相关性的桥梁系统易损性分析以及Monte Carlo(MC)方法的结果对比, 验证提出方法的有效性。这是一篇发在《土木工程学报》上的文章,是高维Copula在土木工程方向的应用。
2024-04-04 23:24:38
1436
1
原创 Copula应用(1):基于高维 Copula 函数的 风、光、负荷的出力场景生成
针对具有相关性的风、光和负荷出力典型场景难以生成的问题,本文首先得到风、光和负荷的最优边缘分布估计表达式,然后建立多种基于 Copula 函数的风、光和负荷电场出力联合分布模型,判断各个模型的拟合优度,选取最优 Copula 函数作为风电、光伏和负荷联合概率分布,最后采用最优 Copula 联合概率分布生成出力场景。
2024-04-04 23:02:38
2164
5
原创 基于Matlab的粒子群(PSO)优化的长短期记忆网络(LSTM)代码
长短期记忆网络(LSTM)凭借其在时间序列分析中的强大能力,尤其在天气预测等领域显示出其重要性。
2024-03-22 22:48:52
1137
1
原创 基于Matlab的通径分析法代码
气温 (降水) 对植被绿度的直接影响是在不考虑降水 (气温) 变化的影响时,由于气温 (降水) 的变化对植被绿度产生的影响;此外,气温 (降水) 的变化会引起降水(气温) 变化,进而影响植被绿度,即气温 (降水) 对植被绿度的间接影响;
2024-03-22 18:27:36
1167
1
原创 基于Matlab的层次分析法代码
层次分析法(AHP)的核心计算过程,包括一致性检验和计算层次总排序权重。层次分析法是一种定性和定量结合的决策分析方法,用于解决复杂的决策问题。
2024-03-22 16:30:39
2150
1
原创 (6)计算两个栅格变量数据的Copula联合概率分布
在多维时间和空间上生成基于栅格尺度的联合概率分布和多维概率分布概率。比如一个简单的问题,2000-2020年某个区域每日的温度和降水的联合概率分布,这样计算出整个区域的概率分布特征。
2024-03-22 00:24:43
2144
9
原创 基于Matlab计算自变量的偏相关系数随时间的变化趋势并绘制置信区间
计算偏相关系数:对于 2007 到 2020 年的每个月,计算特定列的数据与另一列的偏相关系数,过滤掉了 Y 值小于 0 的行。最后,去除了相关系数数组中的 NaN 值,并将相关系数的绝对值乘以 100。置信区间绘图:绘制调整趋势后的相关系数 (corr-detrend(corr)) 的线图,并添加置信区间。之后,使用 interp1 进行插值以获得更平滑的曲线,并用 fill 函数添加置信区间的填充色。清理数据:从 Excel 文件中读取数据,并移除包含 NaN 或负数的行。
2024-03-09 23:47:50
1742
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人