Romberg 龙贝格算法求积分值

R o m b e r g Romberg Romberg龙贝格算法

由误差的事后估计 I − T 2 n I − T n ≈ 1 4 \frac{I-T_{2n}}{I-T_n}\approx\frac{1}{4} ITnIT2n41将上式移项得 I − T 2 n ≈ 1 3 ( T 2 n − T n ) I-T_{2n}\approx \frac{1}{3}(T_{2n}-T_n) IT2n31(T2nTn)
也就是如果用 T 2 n T_{2n} T2n作近似,则误差为约等于右边的部分,
那么将误差作为一种补偿加到 T 2 n T_{2n} T2n上,那么得到的 T ‾ = 4 3 T 2 n − 1 3 T n \overline{T} =\frac{4}{3} T_{2n}-\frac{1}{3}T_n T=34T2n31Tn应当是更好的结果。

经验证可知,实际上:
S n = 4 3 T 2 n − 1 3 T n S_n = \frac{4}{3}T_{2n}-\frac{1}{3}T_n Sn=34T2n31Tn
即,补偿后的结果实际上是 S i m p s o n Simpson Simpson法的积分值,于是我们用梯形公式的递推可以直接算出辛普森的积分值。

相应的: C o t e s 积 分 值 C n ≈ 16 15 S 2 n − 1 15 S n Cotes积分值\qquad Cn\approx \frac{16}{15}S_{2n} - \frac{1}{15}S_n CotesCn1516S2n151Sn
同样的,依据 C o t e s Cotes Cotes法的误差公式,进一步导出 R o m b e r g Romberg Romberg公式
R n = 64 63 C 2 n − 1 63 C n R_n = \frac{64}{63}C_{2n} - \frac{1}{63}C_n Rn=6364C2n631Cn
由此,将收敛缓慢的梯形值序列加工成了收敛迅速的龙贝格值序列。

代码:

#include <iostream>
using namespace std;

double f(double x){
    if (x == 0) {
        return 1;
    }
    return sin(x)/x;
}

int main(int argc, const char * argv[]) {
    double b, a, epsilon;
    cout<<"请依次输入积分区间[a,b],允许的误差限epsilon"<<endl;
    cin>>a>>b>>epsilon;
    double h = b - a;
    double T1 = (f(a) + f(b)) * h / 2;
    double T2;
    double S1, S2;
    double C1, C2;
    double R1, R2;
    int k = 1; //k为二分次数
    double sum;
    double x;
    bool flg1 = false, flg2 = false, flg3 = false;
    do {
        if (flg3) {
            R1 = R2;
        }
        do {
            if (flg2) {
                C1 = C2;
            }
            do{
                if (flg1) {
                    ++k;
                    h /= 2;
                    T1 = T2;
                    S1 = S2;
                }
                sum = 0;
                x = a + h / 2;
                while (x < b) {
                    sum += f(x);
                    x += h;
                }
                T2 = sum * h / 2 + T1 / 2;
                S2 = T2 + (T2 - T1) / 3;
                flg1 = true;
            }while(k == 1);
            
            C2 = S2 + (S2 - S1) / 15;
            flg2 = true;
        } while (k == 2);
        R2 = C2 + (C2 - C1) / 63;
        flg3 = true;
    } while (k == 3 || fabs(R2 - R1) >= 3 * epsilon);
    
    cout<<R2<<endl;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值