题目
思路
我们使用dp来做,令dp[i]表示前i个字符串可以匹配的编码方式的总数。有以下的测试用例:
- 200 不合规
- 20 [20]
- 1021 [10,2,1] [10,21]
- 4021 不合规
根据上面的例子,我们发现,出现在字符串中间的0必须满足组成20或者10,否则是不合规的。因此,我们首先判断当前字符是否能和前面的字符组成10~26。如果可以,当组成的数字时20/10的时候,dp[i]=dp[i-2];如果组成的数字非20/10,有两种可能,单独组成一个和两个合并,因此转移方程dp[i]=dp[i-1]+dp[i-2]。其次,如果不能组成10-26的数字,如果当前数字是0,那么就不合法,否则dp[i]=dp[i-1].
代码
class Solution {
public:
int numDecodings(string s) {
int n = s.length();
if(s[0] == '0') return 0;
//因为涉及i-2,因此这里开的数组要稍微大一点
vector<int> dp(n + 1, 0);
//初始化
dp[0] = dp[1] = 1;
for(int i = 1;i < n;i++){
//如果构成了10~26的数字
if(s[i - 1] == '1' || s[i - 1] == '2' && s[i] < '7'){
int ans = (s[i - 1] - '0') * 10 + s[i] - '0';
//当前数字是10/20的时候
if(ans == 10 || ans == 20) dp[i + 1] = dp[i - 1];
//如果不是10/20
else dp[i + 1] = dp[i - 1] + dp[i];
}else{
//1-9
if(s[i] != '0') dp[i + 1] = dp[i];
//出现了不合法的0
else return 0;
}
}
return dp[n];
}
};