比特币上的人工智能

本文探讨了如何将人工智能与比特币区块链结合,利用公开透明的特性创建协作数据集。以感知器为例,展示了在区块链上实现基础神经网络结构的潜力,预示了更复杂AI网络的未来可能性。
摘要由CSDN通过智能技术生成

以感知机为例

人工智能,尤其是机器学习形式的人工智能,最近取得了巨大的进步,应用范围从人脸识别到自动驾驶汽车。我们建议将 AI 与比特币区块链结合起来,以获得许多其他方式无法实现的显着优势¹:

  1. 公开透明:区块链上的代码和数据都是公开的,任何人都可以验证,因此是可信的。
  2. 协作数据集:与传统的孤立数据集相比,每个人都可以贡献数据并访问已发布的数据。

比特币不仅可以维护链上的数据集以作为 AI 的输入,它还可以托管 AI 算法本身来处理这些数据集²。

我们已经实现了一个机器学习的基本构建块——感知器,并展示了在比特币上构建 AI 的巨大潜力。

感知器

与作为神经网络构建块的神经元类似,感知器相当于人工神经网络 (ANN)。感知器是单层神经网络,如下所示:

在这里插入图片描述

它消耗多个输入,对它们进行加权、求和,将其馈送到阶跃函数(如下所示)并产生一个二进制输出(只有 0 或 1)。

在这里插入图片描述

一个性别分类感知器

我们使用感知器来解决一个简单的分类问题。输入是多人的身高和体重,输出是他们的性别。

在这里插入图片描述

红色标记表示男性和洋红色表示女性

我们的目标是拟合一条将所有男性样本与女性样本分开的边界线。当样本变得庞大时,感知器是一种很好的找到界限的方法。

我们已经将这样的感知器实现为有状态合约。它的状态由所有权重和偏差(图中的 w0)组成。最初,它们被分配一些随机值,然后在每次交易更新状态时进行调整。学习阶段一直运行到收敛。

// Perceptron's internal state includes 2 inputs: height & weight
struct State {
	int heightWeight;
	// 1st weight means weight in KGs
	int weightWeight;
	int bias;
}

struct Input {
	// in inches
	int height;
	// in KGs
	int weight;
}

// correct classification of gender: 0 means female, 1 male
type Output = int;

/*
 * A simple perceptron classifying gender based on height & weight
 */
contract Perceptron {
	// sample size
	static const int N = 10;
	// learning rate
	static const int LR = 1;

	// training data set
	// inputs
	Input[N] inputs;
	// outputs
	Output[N] outputs;

	// train the perceptron
	function train(State s) : State {
		loop (N) : i {
			int prediction = this.predict(s, i);
			int delta = this.outputs[i] - prediction;
			s = this.adjust(s, delta);
		}
		return s;
	}

	// prediction for the i-th input
	function predict(State s, int i) : int {
		int sum = s.bias;
		sum += this.inputs[i].height * s.heightWeight + this.inputs[i].weight * s.weightWeight;
		return stepActivate(sum);
	}

	// learn internal state
	function adjust(State s, int delta) : State {
		int scaledDelta = delta * LR;
		loop (N) : i {
			s.heightWeight += this.inputs[i].height * scaledDelta;
			s.weightWeight += this.inputs[i].weight * scaledDelta;
		}
		s.bias += scaledDelta;
		return s;
	}

	// binary step function
	static function stepActivate(int sum): int {
		return (sum >= 0 ? 1 : 0);
	}
}
感知器合约

我们的感知器找到的最终边界如下所示。

在这里插入图片描述

性别分类感知器

总结

一旦我们将感知器构建为基本模块,就可以在比特币之上构建更先进、更实用的人工神经网络,从而开辟无限机会。


[1] 区块链上的去中心化和协作 AI,JD Harris,2019

[2] 区块链上的人工智能实现。用例和未来应用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sCrypt Web3应用开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值