一些理论
文章平均质量分 67
零散的理论知识
杨石兴
这个作者很懒,什么都没留下…
展开
-
【数学】三维向量绕任意轴的旋转公式
关于齐次坐标以及绕坐标轴的旋转,需要提前了解,参考本博客的文章:【数学】齐次坐标、三维点/向量的平移、缩放、旋转下面来推导绕任意轴旋转角度的公式首先我们将看待为其由轴,绕y轴旋转了,又绕轴旋转了(逆时针是正,顺时针是负)。如果我们要求一个向量绕旋转的公式,我们可以先执行将旋转到轴的变换,而后执行绕轴旋转,之后再执行将轴再移回。由于有点绕,我们再分步骤详述一下:将旋转轴绕轴旋转转至平面 将旋转轴绕轴旋转转至与轴重合 绕轴旋转 执行步骤2的逆过程 执行步骤1的逆过程...原创 2021-01-14 18:24:34 · 21158 阅读 · 5 评论 -
【数学】齐次坐标、三维点/向量的平移、缩放、旋转
【坐标系约定】约定坐标系是为了在计算过程中需要脑中进行想象的部分有所依据。我们约定轴遵守右手系,如下:可以认为轴向屏幕右侧,轴向屏幕上,轴向屏幕外。【齐次坐标】向量与点的齐次坐标是有不同的,若代表一个向量,则其其次坐标为,若其代表一个点,则其齐次坐标为,为什么其有不同呢?其原因如下:拿平移来说,从数学上来讲,向量代表的是方向,一个向量平移之后,其结果仍然是这个向量,而一个点平移之后,其值就会发生变化但仍然是一个点。我们首先来看通用的情况为齐次坐标的情况,来看的取值。若取0,则原创 2021-01-13 17:07:06 · 7396 阅读 · 4 评论 -
【数学】向量的四则运算、点积、叉积、正交基
除了正常的加减乘除以外,向量的最常见的三个运算是点积、叉积、正交基。对于向量的乘法和除法要做一下说明,因为除发的效率要远低于乘法,因此会将除法尽可能的化为乘法来实现。比如我们要对向量缩放一半,则可以除以2,也可以乘以0.5,则尽量要以乘以0.5来实行。【向量定义】对于维向量来说,有个相互垂直的正交基 {},那么一个独立的维标量集{}和此正交基存在一个线性组合,则就是一个维向量。这里...原创 2019-05-17 12:25:03 · 11078 阅读 · 1 评论 -
【数学】导数(Derivative)的定义、洛必达法则
本节我们来阐述导数的定义当有函数时,在其一点,我们定义当增加时,y的变化量(注意不一定是增加,也可能是减少)是则我们定义:为在x方向上,y的导数。当时,图中的蓝线会逼近红线,对于几何意义来说,导数的值也即是当前点的斜率,斜率大小不一决定了时向y值在()处向(x)处的收敛速度。物理意义来说导数代表瞬时变化率。举例来求常见函数的导数:其中用到重要极限:,其证明过程可...原创 2019-05-13 12:19:00 · 7924 阅读 · 0 评论 -
【数学】极限-夹逼定理,重要极限sinx/x的证明
本文将证明重要极限:因为很多的0/0的极限最终都划为了这个形式,所以我们要先证明它。设圆的半径r=1,从上图有:x =(由弧度的定义,弧度x的值等于r=1时,所对应的弧长)由图中可以看出取倒数再乘以sinx则有:由:使用夹逼定理便得:...原创 2019-05-13 11:19:28 · 25056 阅读 · 3 评论 -
【PBR理论】第2讲 BRDF理想漫反射(Diffuse)
针对渲染方程中的BxDF(参考:【PBR理论】第1讲 渲染方程概述),我们本节讨论BxDF中的BRDF的理想模型漫反射。针对漫反射来说:,其中可以是材质的颜色。而为什么要除以一个呢。首先我们来做一个假设,假设入射光分布在该点的所有方向上且亮度相同,且此时和都是常数,则:,注意该是入射光与受光面法线的夹角。上述是立体角积分(参考:【数学】立体角,积分求球的表面积、体积)式...原创 2019-05-16 13:23:33 · 3928 阅读 · 3 评论 -
【PBR理论】第1讲 渲染方程概述
某一点P的渲染方程,其实就是该点受光源影响的颜色。我们首先给出方程,然后将会花费大量的篇幅来实践该方程中各个参数的各种情况。各部解释:是P点的出射光亮度。也即入眼的亮度,最终渲染的颜色。 是P点自发光的亮度。P本身可以发光,比如本身是个灯、荧光棒等。 是P点入射方向到出射方向光的反射比例,即BxDF,一般为BRDF。能量守恒来说,入射光比例与出射光比例的和为1。 是P点入射光亮度...原创 2019-05-16 12:20:10 · 1989 阅读 · 0 评论 -
【PBR理论】第0讲 光照模型
逐步的我们来学习和PBR有关的理论基础,然后指导我们的实践。【概念】我们认为光是粒子。每个粒子叫做光子。光通量:单位时间内某一表面接受光子的总数量。亮度:亮度就是光通量的密度。半径为的球体的表面积: 推导过程参考:【数学】立体角,积分求球的表面积、体积【计算亮度1】下面来计算一个光源,它发出去的光通量为P(也即光源的功率,是已知量),那么在该光源表面罩一个半径为的球,...原创 2019-05-16 11:19:46 · 1044 阅读 · 0 评论 -
【数学】立体角,积分求球的表面积、体积
对于做实时光线跟踪的理论学习来说,立体角是个非常基础又重要的概念,因此我们要对其进行惮述。在平面圆中我们定义了角的一个衡量标准:弧度。也即当圆的半径时,该圆心角的弧长的值即为弧度。针对三维中球面的概念,我们定义了立体角。先看图:假若球的半径为,那么我们定义如图所示的锥形,也即:由水平角和垂直角的变化量和交叉形成的一小块区域,现在来估算它的面积近似的我们认为它是个长方形,其中由决定的...原创 2019-05-15 00:12:23 · 32356 阅读 · 4 评论 -
【数学】使用积分推导圆的面积公式
本文将使用积分公式简明扼要的证明圆的面积公式第一步:划分求微元将圆心角在划分为n份,对应圆周上的点为其中最大的一份圆心角为,因为圆心角的弧度值就是其对应的边长的弧长/r,因此就代表其圆心角最大。任取一个划分求其对应的微元的面积,拿弧长近似为底,r为高,也即图中海绿色的部分注意这里使用了圆心角的弧度值就是其对应的边长的弧长/r。第二步:求和求极限求和 ,注意求和是约...原创 2019-05-14 22:26:00 · 14116 阅读 · 0 评论 -
【数学】第二型曲线积分
先从一个物理概念入手,有一个质点受如下的变力作用:其中为该力x方向上的分量,为该力y方向上的分量。该力F沿曲线L从A到B一共做了多少功呢?我们使用积分求解的典型步骤来完成求解:第一步:分割计算微元,特点是计算的微元必须是分段的,因为连续性,会有统一的方程将AB分割成n份,则对中取任意一点该段的作用力则:在该区间内的功,近似第二步:求和第三步:取...原创 2019-05-14 21:28:45 · 5181 阅读 · 0 评论 -
【数学】第一型曲线积分
首先先学习弧长积分:【数学】弧长的积分公式,也即求曲线方程曲线的长度,求圆的周长公式弧长积分的微元如下:【第一型曲线的参数方程】我们假设都是关于t的函数,有则积分公式为:假若在曲线微元ds上,有密度函数,则曲线积分:就是该曲线的质量。这就是第一类曲线积分。【非参数方程】有密度函数,则结合弧长公式有曲线积分:(弧长公式)【几何意义】1、...原创 2019-05-14 16:13:18 · 16887 阅读 · 0 评论 -
【数学】弧长的积分公式,也即求曲线方程曲线的长度,求圆的周长公式
本文将推导弧长积分公式。对于函数,在区间上连续可导。那么求该函数在该区间上的弧的长度。则弧长的微元则在区间上,弧长(弧长公式)针对于积分的定义,可以使用牛顿.莱布尼茨公式对其进行求解。【求圆的周长举例】圆的半径设为,圆的公式为,划为的形式为,此处y取正值,先求在第一象限内的四分之一圆。由于弧长公式中有个,我们先把求出来:则将其带入弧长公式,在第一象限的...原创 2019-05-14 15:57:32 · 114961 阅读 · 2 评论 -
【数学】积分法推导求圆的周长、弧度
【圆的周长】我们知道圆的周长是那么使用微积分的思想是如何推倒的呢,下面请看思路:看上图左,表明了两件事情,一个是圆的参数方程,参数为角度θ,其中由图左可以得出圆上的任意一点P(x, y),其中 由图左考虑图中灰色阴影部分,角度增加了,那么弧长增加了,那么针对,(右图中红色),(右图中蓝色的部分),则近似有:使用微分的思想则有我们分别对 ,求θ对于x的导数,则有...原创 2019-05-07 01:06:07 · 12600 阅读 · 0 评论 -
【数学】积分(integration)的定义,黎曼和,黎曼积分,牛顿.莱布尼茨公式,微分三大中值定理
【积分的定义】本文将详细的描述积分的定义和牛顿.莱布尼茨公式。感谢此文:如何简单地证明、理解牛顿-莱布尼兹公式?在上面四个图中,我们可以看到,使用等分矩形的形式来计算曲线与坐标轴所围的面积,则当细分到一定程度时,则二者是几乎相等的。德国数学家黎曼,定义了黎曼和,也即在闭区间上进行分隔,也即,则,也即是分隔的区间中,最大的区间。我们再对于每个取样区间中,取一点定义以下...原创 2019-05-14 14:02:04 · 16041 阅读 · 0 评论 -
【数学】微分(Differential)的定义,微分与导数的区别
本文会详细的定义微分,并结合导数的概念,详细的说明二者的差别。如上图所示,对于函数y=f(x)来说,在任意一点p(x, y)上,若x方向上有增量,则在y的方向上有增量,当时,导数的定义为可见导数关心的是当x发生变化时,y发生变化这二者之间的比率。而微分的定义为当x发生微小变化时,在y方向上发生的微小变化,由导数公式我们来看,则可以有则有,则最终有: (式一)其...原创 2019-05-14 12:39:51 · 18205 阅读 · 0 评论