自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(90)
  • 资源 (6)
  • 收藏
  • 关注

原创 Matlab自学笔记六十七:(编程实例)非线性方程组求解fsolve

摘要:fsolve是MATLAB中用于求解非线性方程(组)的函数,通过迭代寻优获得近似解(某些情况下可视为精确解)。使用时需确保方程函数连续,对于多解问题可通过设置不同初始点获取不同解。文章以解方程组2*x-y-exp(-x)=0和-x+y-exp(-y)=0为例,演示了将多变量转换为向量分量(x(1),x(2))的编程方法,并给出了运行结果x=0.7847,y=1.1132。文末推荐了多个MATLAB相关学习资源,包括遗传算法、深度学习等内容。

2025-11-02 16:34:59 570

原创 算法代码速成8:非线性最小二乘问题编程示例:人口预测

本文介绍了非线性最小二乘问题的求解方法,重点讲解了马尔萨斯人口增长模型的拟合案例。通过1950-2000年的人口数据,建立指数函数f(t)=p0e^rt进行非线性拟合,并预测2000-2020年人口变化。使用MATLAB的lsqcurvefit函数求解参数,得到p0=2.5794、r=0.0176,拟合优度R²=0.9947,均方根误差RMSE=0.0916,表明模型拟合效果良好。文章还给出了完整的MATLAB实现代码和可视化方法,并推荐了相关学习资源。

2025-10-18 17:31:57 504

原创 算法代码专题7:多元线性最小二乘问题应用实例:房价预测

本文基于波士顿房价数据集,通过多元线性回归模型演示最小二乘法在多因素预测中的应用。选取面积、房间数和房龄三个特征变量,建立房价预测模型。MATLAB实现结果显示回归方程为:房价=127.96+2.15面积+21.99房间数-1.74*房龄,其中房间数影响最显著。模型决定系数R²=0.9497,表明模型具有较强解释力。通过可视化展示了实际房价与预测房价的良好拟合效果,验证了多元线性回归在房价预测中的有效性。

2025-10-06 10:30:03 816

原创 算法代码讲座6:最小二乘法理论原理、典型案例与MATLAB实现

最小二乘法是一种通过最小化误差平方和来拟合数据的数学优化方法。核心流程包括:选择模型、构建目标函数、优化求解参数。线性最小二乘问题有解析解β=(XᵀX)⁻¹XᵀY,可解释为在列空间中寻找正交投影。文中以弹簧实验为例,通过Matlab实现拟合,得到k=0.5208N/cm,b=0.2cm,R²=0.9987显示优异拟合效果。该方法数学基础坚实、实现简单,可扩展至非线性问题,是数据分析的基础工具。

2025-09-20 17:48:06 830

原创 Matlab自学笔记六十六:求解带参数的不等式

摘要:本文介绍了使用MATLAB的solve函数解不等式的方法,指出解不等式本质是求满足条件的解范围。通过示例演示了求解带参数一元二次不等式3ax²-4ax+a²<0(a<0)的过程,结果为a<x<a/3。文中特别说明结果在变量c中,需提取c(1)并简化。同时提及了其他MATLAB功能,包括深度学习工具箱、一维插值、交叉验证、SVM算法、绘图设置等主题,展示了MATLAB在数学运算和数据可视化方面的强大功能。

2025-08-31 21:44:45 313

原创 Matlab算法代码速成5:Matlab求解分段微分方程编程示例

本文介绍了在Matlab中求解分段微分方程的方法。通过定义一个piecewiseODE函数,根据x值选择不同的微分方程表达式。示例演示了在区间[-1,1]上求解y'=x(x<0)和y'=-x(x≥0)的数值解过程,包括设置初始条件、求解网格和欧拉方法实现。最后指出该方法适用于光滑函数,不连续情况需采用其他数值方法。文末推荐了Matlab优化算法和深度学习相关视频资源。

2025-08-10 12:53:31 314

原创 Matlab算法编程示例4:数值解法求解常微分方程的代码实例

本文介绍了如何在MATLAB中使用ode45函数求解常微分方程。ode45是基于龙格-库塔法的数值求解器。示例程序演示了求解dy/dt=-2ty的过程:首先定义微分方程函数odefunc,然后设置初始条件y0=1和时间范围tspan=[0,1],调用ode45求解后绘制结果曲线。程序可修改为其他微分方程和初始条件。该方法是MATLAB中求解常微分方程的常用方法。

2025-08-03 13:19:17 263

原创 Matlab自学笔记六十五:解方程的数值解法(代码速成)

摘要:本文介绍了MATLAB中求解方程的数值解法vpasolve,适用于无法获得解析解的情况。与solve函数不同,vpasolve直接求取近似数值解,对于非多项式方程只返回第一个找到的解。通过解方程sin(x)=exp(x)的示例,展示了当solve无法求得解析解时自动调用vpasolve的过程,并演示了如何结合图像预判解的范围。文章还提供了多个相关MATLAB应用的推荐内容,包括最小二乘法、机器学习算法、优化算法等。数值解法在工程实践中具有重要作用,能够解决许多复杂方程的求解问题。

2025-07-26 21:11:34 532

原创 Matlab自学笔记六十四:求解自变量带有约束条件的方程

摘要:本文介绍了在Matlab中使用符号运算求解带约束方程的方法。对于简单约束(如x>0),可在声明符号变量时直接添加条件(如syms x positive);复杂约束需用assume函数设置。示例演示了方程x²+x-2=0在x>0约束下的求解过程:无约束时解为[-2,1],添加约束后仅输出x=1。文章还推荐了相关Matlab编程视频,涵盖求导、最小二乘法、神经网络预测等内容。(149字)

2025-07-20 17:24:32 319

原创 Matlab自学笔记六十三:解方程组

摘要:本文介绍了使用MATLAB的solve函数解方程组的方法。通过示例方程组x²+y²=5和x+y=3,演示了编程实现过程。solve函数返回的解solx和soly需要对应成组理解,本例中实际只有一组解(x=1,y=2和x=2,y=1)。当方程组无解时,solve会返回空解。文章还提示方程组的解与单方程解法类似,并强调了变量互换性对结果展示的影响。(98字)

2025-07-13 09:19:48 381

原创 Matlab自学笔记六十二:求解三角函数方程的通解周期解

本文介绍了Matlab中solve函数的进阶用法,重点讲解了如何使用'ReturnConditions'参数获取带参数的方程通解。通过求解cos(x)=-1的示例,展示了该函数返回周期解(pi+2pik)、参数(k)及参数条件(k为整数)的具体应用。文章还推荐了相关学习资源,包括符号运算、GUI设计等Matlab教程链接,帮助读者进一步掌握方程求解及其他Matlab功能。

2025-07-07 20:14:41 929

原创 Matlab自学笔记六十一:快速上手解方程

本文介绍了方程求解的两种方法:解析解法和数值解法,重点解析了符号数学工具箱在MATLAB中的应用。解析解法通过精确的符号运算获得解析表达式,如二次方程的通解。文章详细说明了符号对象的使用方法,包括符号变量声明和方程输入方式(需用"=="表示等号)。通过三个编程示例演示了solve函数求解一元方程、指数方程和带参数二次方程的过程,展示了符号运算的精确性。符号计算避免了数值计算的舍入误差,适用于需要精确解析解的场合。

2025-06-29 20:00:02 682

原创 Matlab自学笔记六十:符号表达式的缩写和简化

摘要:对于复杂的符号表达式,可以通过缩写和化简提高可读性。Matlab提供了多种工具:pretty函数可嵌套缩写重复子表达式;subexpr仅支持单层缩写并默认使用sigma变量;simplify能有效简化表达式。但复杂表达式可能无法进一步简化,这与工具能力无关。示例展示了这些函数的用法和区别,如化简(1-x^2)/(1-x)得到x+1结果。同时视频内容涵盖KNN算法、微分方程求解等Matlab进阶主题。(150字)

2025-06-23 21:45:49 481

原创 Matlab自学笔记五十九:符号变量的代入和替代subs精讲

摘要:本文介绍了符号变量的替代方法及其应用场景。主要使用subs函数实现符号变量替换为数值、矩阵或其他表达式,包括单变量替换(如subs(f,x,1))、多变量替换(如subs(f,[xy],[12]))以及矩阵元素替换(如m(1,3)=sym('a'))。还展示了如何将符号变量替换为表达式(如x^2+x+1+y)或符号矩阵。示例运行结果验证了各种替换方法的正确性,包括默认变量替换、矩阵元素替换等操作,为符号计算提供了灵活的实现方式。(149字)

2025-06-16 22:14:06 441

原创 Matlab自学笔记五十八:符号型和数值型变量之间的转换

数值型转换成符号型用sym,返回数值表达式的有理近似值,转换的原理是,通过匹配p/q, pπ/q, (p/q)^1/2,2^q和10^q(其中p和q是中等大小的整数)这样的形式来修正舍入误差(符号型为精确值);1.25/Matlab显示格式/format的用法/如何更改命令行窗口默认显示四位小数,这里有答案。14.2/Matlab解一阶非线性微分方程/人生若只如初见 何事秋风悲画扇。47.2/Matlab遗传算法/种群初始化/种群大小/范围/适应度函数。1.49/Matlab实时脚本/写论文必备技能。

2025-06-10 07:09:20 352

原创 Matlab自学笔记五十七:符号运算、可变精度运算、双精度浮点型运算,三种运算精度的概念、比较、选择和应用

Matlab提供了三种算术运算精度方式:符号算术(精确计算)、可变精度算术(vpa函数,默认32位可调)和双精度浮点数(默认16位精度)。通过sin(pi)的计算对比可见精度差异:符号算术结果为0,vpa算术误差为10^-40量级,双精度误差为10^-16量级。精度设置可通过digits函数调整运行环境精度或vpa(pi,n)指定位数。这三种方式在运算速度、内存消耗和精度之间形成平衡:符号算术最精确但计算量大,双精度运算最快但精度最低,vpa算术则提供了灵活的中间选择。

2025-06-03 21:55:45 1109

原创 Matlab快速上手五十六:详解符号运算里假设的用法,通过假设可以设置符号变量的取值范围,也可以通过假设设置变量属于集合:整数、正数和实数等

本文介绍了Matlab符号数学工具箱中符号变量的假设设置方法。通过assume函数可为变量设置取值范围或所属集合(如整数、实数等),使用assumptions查看假设,assumeAlso追加假设,assume(x,'clear')清除假设。文章以解方程为例,展示了假设的实际应用:当限制x>0时,x+1=0无解;而y为实数时,y+1=0的解为-1。文末推荐了相关Matlab学习视频,涵盖符号运算、优化算法等内容。

2025-05-27 07:01:53 613

原创 Matlab自学笔记五十五:符号运算:算术运算、关系运算和逻辑运算

符号运算在数学和编程中扮演着重要角色,涉及算术、关系和逻辑运算。符号对象的运算与浮点型数据相似,但需先声明符号变量。例如,sym(1)+1进行符号型运算,而syms a b x声明符号变量后,可进行如a+1或f=a+b+1的运算。符号函数和矩阵的运算也类似,如g(x)=a*x+b和矩阵m=[a b; b a]的运算。关系运算和逻辑运算如1<2和a|b,以及使用isAlways函数判断符号表达式是否为真。此外,推荐了多个Matlab编程实例和教程,涵盖从基础运算到高级应用,如SVM支持向量机、神经网络编

2025-05-21 06:44:47 623

原创 Matlab自学笔记五十四:符号数学工具箱和符号运算、符号求解、绘图

符号数学工具箱是Matlab中的一项功能,专门用于处理符号对象,如符号数字、变量、表达式和函数等。与常规的数值型数据不同,符号运算能够提供精确的数学结果,避免了浮点运算中的近似误差。通过使用sym和syms函数,用户可以创建符号变量和表达式,进行符号矩阵运算和符号函数定义。符号数学工具箱还支持解方程、绘图和操作符号数学方程,适用于需要高精度计算的场景。通过符号运算,用户可以更准确地处理数学问题,尤其是在涉及分数、极限、微积分和微分方程等领域。

2025-05-12 21:34:40 671

原创 Matlab自学笔记五十三:保存save和载入load

Matlab工作区变量是临时存储,退出Matlab后会丢失,可以把当前工作区数据保存到一个.mat的文件中,方便存储传输,保存工作区的变量和数值,重启Matlab后再载入数据,保存和载入使用函数save和载入load。使用日志文件可以记录Matlab命令窗口的所有会话内容,把变量创建和保存过程用日志文件记录下来,日志文件可以使用文本方式打开和编辑,使用日志文件使用函数diary。36.10【Matlab GUI 精讲】表格控件uitable,跟Excel表格是一样的用法吗,答案是否定的。

2025-05-05 10:05:41 515

原创 Matlab自学笔记五十二:变量名称:检查变量名称是否存在或是否与关键字冲突

1.变量名称的命名规则有效的变量名称以字母开头,后跟字母、数字或下划线,Matlab变量名称对字母大小写是区分的,A和a是不相同的变量,不能使用与Matlab关键字冲突的变量名称,例如if、end等,判断一个字符是不是关键字使用函数iskeyword;尽量避免使用与函数名相同的变量名,如clear、sin等,如果无意中创建了冲突的变量,使用clear清除,判断一个变量是否被清除,使用函数exist;2.未定义的函数或变量在Matlab中使用函数或变量时,可能会提示以下错误消息:未定义的函数或变量“a”

2025-04-28 22:02:15 796

原创 Matlab自学笔记五十一:(推荐)输入参数的数量和可变数量的输入

Matlab中, 可以使用可变输入函数varargin,接收不固定的输入参数,一个、三个、十个等,都可以,一般情况下,varargin会作为一个元胞数组类型的变量,包含了所有输入参数,具体使用哪个输入参数进行运算,可以从元胞数组中拆分出来,另外,输入了多少个参数,可以使用nargin函数确定,一般来讲,nargin是一个标量数值,也就是输入参数的数目。function v=fx1_47(varargin) %Matlab内置函数,使用一个占位参数varargin,可接收输入参数数量不固定的多个输入参数。

2025-04-21 07:14:51 2210

原创 Matlab学习笔记五十:循环语句和条件语句的用法

37.4 Matlab AppDesigner设计案例:学生信息注册系统,编程演示列表框和下拉框的用法,初学者很友好。23.1 一节入门Matlab拟合问题fit,建立预测变量与响应变量之间的关系(一般是函数关系)23.3 详解拟合优度评价指标:sse,rmse,dfe,rsquare,Adjrsquare。31.6 Matlab绘制条形图柱状图,改变单个柱的颜色,堆叠显示,改变线型线宽。if 1<2 %判断条件是否满足,若不满足跳转到下一个分支条件。

2025-04-13 22:13:12 517

原创 Matlab自学笔记四十九:类型识别:判断数据的类型和类别

Matlab中判断数据类型,常用的函数包括:变量信息whos,类型class,无穷大isinf,非值isnan,数值型isnumeric,实数isreal,有限值isfinite,综合判断isa,字符向量元胞数组iscellstr。对于给定的变量数据,如何判断它的数据类型呢,例如例如数值型(整数、浮点数、实数、无穷数、有限数、nan等)、字符(串)型、结构数组、元胞数组、表、函数句柄等。isa(int16(1),'integer') %判断int16(1)是否为整数。

2025-03-30 10:10:30 1472 1

原创 Matlab自学笔记四十八:各类型缺失值的创建、判断、替换、移位和处理方法

fillmissing(a,'constant',0) %变量中缺失值替换成参数0,'constant'和0表示把缺失值替换为常数0。standardizeMissing(s,["b" missing]) %变量中参数"b"替换为缺失值。fillmissing(s,'constant',"fill") %变量中缺失值替换成参数"fill"s=[string(missing) "a" "b"] %字符串型缺失值。ss=[missing "a" "b"] %字符串型缺失值。

2025-03-16 20:41:12 628

原创 Matlab自学笔记四十七:如何把日期时间型数据作为横坐标进行绘图

0小时 1小时 2小时 3小时 4小时 5小时 6小时 7小时 8小时 9小时。26.1(下) 一节入门SVM支持向量机算法,Matlab编程讲解,最佳超平面建模原理创建分类边界。t1=datetime('today')+caldays(0:9) %创建一个时间点。t2=0:hours(1):hours(9) %创建一个持续时间。% xtickformat('yyyyMMdd') %设置横坐标。% xtickformat('m') %设置横坐标。

2025-02-16 20:38:42 1116

原创 Matlab自学笔记四十六:与日期向量、序列日期值、日期字符向量的转换

datestr(t1) %把日期时间型转换成字符向量,与char的区别,可以设置格式,可以转换其他日期型数据,例如日期向量、序列日期值等。(1)日期向量是1乘6的双精度数值型向量,按年月日时分秒顺序排列,以24小时制表示。转成日期向量使用函数datevec,转成序列日期值使用函数datenum,转成字符向量使用函数datestr;datenum('01-01-2018, 6:00 PM') %转成序列日期值的函数。(3)日期向量和序列日期值都是double型向量或值,日期字符向量是字符型向量;

2025-02-09 11:01:57 679

原创 Matlab自学笔记四十五:日期时间型和字符、字符串以及double型的相互转换方法

在Matlab中,大多数函数都有这样的功能:创建函数本身具有转换的功能,例如double函数,可以创建双精度浮点数,也可以把输入参数转换成双精度浮点数,再例如string,可以创建字符串,也可以把输入参数转换成字符串。1.43/Matlab数据类型小结/数值型(整数、浮点数、实数、无穷数、有限数、nan等)、字符(串)型、结构数组、元胞数组、表、函数句柄等。23.3详解拟合优度评价指标:sse,rmse,dfe,rsquare,Adjrsquare。y=hours(d)%输入时间型,转成双精度。

2025-01-18 21:48:57 848

原创 Matlab自学笔记四十四:使用dateshift函数生成日期时间型序列数据

t=dateshift(t1,'start','hour',0:2) %一天时间的起点是0点,第0天是当前天,0:2表示从今天往后推两天。t=dateshift(t1,'dayofweek',3) %当前时间之后,最近的符合时间,一个星期第三天,即星期二,星期天是第一天。t=dateshift(t1,'end','month',0:2) %0表示当前范围的,1表示下一个。t=dateshift(t1,'dayofweek',3,0:2) %0表示当前范围的,1表示下一个。

2024-12-08 08:52:30 680

原创 Matlab自学笔记四十三:使用函数拆分日期时间型数据的子信息:年、月、日、时、分、秒

37.15 Matlab app多功能图像函数演示界面,Appdesigner工具栏的用法,多个图像绘图回调函数的原理和应用。31.6 Matlab绘制条形图柱状图,改变单个柱的颜色,堆叠显示,改变线型线宽。ymd(t) %返回年月日,指定一个输出参数,那么仅返回一个输出,即年份。26.1(上) 一节入门SVM支持向量机算法,含Matlab编程讲解。month(t,'name') %通过附加参数获取月份的名称。[y,m,d]=ymd(t) %返回年月日。[h,m,s]=hms(t) %返回时分秒。

2024-12-02 20:59:32 599

原创 Matlab自学笔记四十二:日期时间型变量的属性及其应用

Matlab app多功能图像函数演示界面,Appdesigner工具栏的用法,多个图像绘图回调函数的原理和应用。日期时间型变量建立后,自带一些属性,属性包括拆分时间信息、设置显示格式等,可以使用处理结构数组的方法访问和修改其中的属性。d2=hours(24,'Format','days') %hours不能设置显示格式。t.Format='dd/MM/yyyy' %通过属性修改显示格式。t.Day=[-1,0,1] %1为本月1日,0为上月最后一天。years(t) %调用函数。

2024-11-24 21:26:33 443

原创 Matlab自学笔记四十一:介绍日期时间型的显示格式:年‘y‘ 月‘M‘ 日‘d‘ 周‘e‘ 时‘h‘ 分‘m‘ 秒‘s‘

日期时间型的显示格式由Format属性控制,改变Format属性不会改变日期时间值,只改变它们的显示方式,最基本的显示格式字符是:年'y' 月'M' 日'd' 周'e',时'h' 分'm' 秒's';%%t=datetime('now','Format','d-MMM-y HH:mm:ss','TimeZone','Asia/Hong_Kong') %显示时区。t = datetime('now','Format','defaultdate') %只显示年月日的默认格式,相对有用。

2024-11-09 21:39:53 1934

原创 Matlab自学笔记四十:日期时间型数据的关系运算:比较大小、比较时间先后、判断是否在两个时间之间

判断一个时间点的大小的基本规则是:时间点越往后则越大;程序示例如下:t1=datetime+calyears(0:2) %首先新建datetime时间序列t1>t2 %时间点的比较,时间越往后越大程序示例如下:t1l=isbetween(t2,t1,t1+calyears(1)) %用函数判断在两个日期之间程序示例如下:3,10,0]) %首先创建duration数组t3>t4。

2024-10-28 07:43:10 835

原创 Matlab自学笔记三十九:日期时间型数据的算术运算:加减运算

时间点和(日历)持续时间是可加的,结果是时间点;两个时间点是可减的,结果是持续时间,用时分秒表示;t5=calyears(2) + calmonths(2) + caldays(2) %日历持续时间自身累加,仍然用字面的年月日表示,无法整合,因为日历时间的长度未知。between(t3,t6) %用between函数,产生日历持续时间类型,按照日历时间计算两个运算数之间的时间间隔。%%可以使用calquarters,calweeks和caldays函数添加或减去日历季度,日历周,或日历日。

2024-10-20 20:20:39 1106

原创 Matlab自学笔记三十八:日期时间序列的创建方法

时间序列是指,某一时间段的时间,也就是说,一组日期时间数据组成的序列,例如,1.1~1.10,1点~5点等,在Matlab中,使用向量表示这种时间序列,例如[2025.1.1 2025.1.2 2025.1.3];通俗理解,大家可以类比数值型向量序列,例如1:5,或者linspace(0,1,10)等。dateshift(t,'start','day',0:2) %start表示返回一天的起点即0点,0:2推移2天。t1 = datetime(2018,5,1,12,0,0) %创建一个时间点。

2024-10-13 20:17:01 1184

原创 Matlab编程示例24:freexyn在b站的读取手写体mnist数据集的matlab代码

简单来说(详细来说,看视频66.35),源文件中前面几行数据是简单介绍的信息,在数据提取时应该跳过,后面的数据按照一定的规律,循环表达图片或者标签的数据,在数据读取的时候,要按照规律一组一组的提取数据,并按照预期的图片或标签数据结构进行重构,得到最终直接表达图片或者标签的数据。简单来说(详细来说,看视频66.35),这是一种类似二进制格式的数据,为什么使用这种格式,我想可能是为了压缩数据大小,方便下载和传输吧,如果直接使用图片存储格式,7万张图片的压缩包有多大,大家自己考虑下哈。

2024-10-05 21:09:13 1144

原创 Matlab自学笔记三十七:日期时间型的概念、分类和创建方法

CalendarDuration型,表示基于日历时间的日期时间的持续长度,calendarDuration表示时间段,以可变长度为单位的持续时间,例如:1个月,可能是28,29,30或31天,calendarDuration数据类型也考虑夏令时和平闰年的变化,使1天可能多于或少于24小时,1年能有365或366天。t = datetime(2018,2,4,16:17,0,0) %时间序列。t = datetime(2018,2,4,16,0,0) %年月日时分秒。

2024-09-23 21:10:34 716

原创 Matlab自学笔记三十六:日期时间型的概念及其简单应用

datetime(t,'Format','y-MM-dd HH:mm:ss eeee') %y M d H m s e分别代表年、月、日、时、分、秒、星期。(1)Datetime型,表示日期时间点,是存储日期和时间数据的主要方法,它支持算术运算,排序,比较,绘图和格式化显示;t=datetime(2018,8,8,12,0,0) %输入参数为:年、月、日、时、分、秒。duration(d,'Format','m') %m表示分钟,另外,h表示小时、s表示秒。

2024-09-17 08:44:28 694

原创 Matlab自学笔记三十五:表table数据与外部文件的读入和写出

stu.chengji=[stu.chengji_1,stu.chengji_2] %上面写出再读入后,多列数据自动拆分,下面把拆分后的数据恢复成原先数据。writetable(t,'student.txt') %使用writetable函数写出数据到txt文件。stu=readtable('student.txt') %从txt文件读入数据,赋值给变量stu。writetable(t,'student.xls') %再次写出数据,这次写出到Excel文件。

2024-09-08 20:09:24 530

原创 Matlab自学笔记三十四:表table的排序、查找、提取、删除、计算、与结构数组的转换

c=table2cell(t) %表格转换为元胞数组后,变量名称消失,变量值转换为元胞数组,其中多列的双精度值会自动拆分为多个单列表示。s=table2struct(t) %表格转换为结构数组后,每一行都变为1个元素,因此是3行1列的结构数组。sortrows(t,'xingming') %按行排序,表格t按字段'xingming’按字母升序。t(tf,:) %使用tf作为逻辑索引,索引表格中符合条件的学生的信息。t(:,[1 2 4 3]) %用索引排序:任意行,列将3和4列互换。

2024-08-25 21:38:54 1046

《freexyn编程实例视频教程系列37 Matlab AppDesigner》课程文档

运用Matlab的AppDesigner进行自定义界面设计和功能编程,具体讲解每个组件(图窗、坐标区、按钮、编辑框、标签、列表框、下拉框、日期选择组件、图像组件、表格、面板、网格布局、菜单栏、上下文菜单、工具栏、选项卡、仪表、信号灯、开关、旋钮等)的属性和回调函数的用法,并且演示一些常用的APP设计案例,方便大家快速学习和借鉴使用。 目录 37.0 概述 37.1 一节入门AppDesigner 37.2 文本显示和编辑组件 37.3 简易计算器 37.4 学生信息注册系统 37.5 图像显示界面 37.6 图像参数设置界面 37.7 图像调整界面 37.8 闹铃/定时器 37.9 面板和按钮组 37.10 信息管理系统 37.11 更改表格数据的显示样式 37.12 图像演示界面(菜单栏) 37.13 图像演示界面(上下文菜单) 37.14 图像处理菜单 37.15 图像演示界面(工具栏) 37.16 软件初始化图片页面 37.17 软件上添加网址链接 37.18 图像参数精调界面 37.19 信息录入系统 37.20 信息查询系统 37.21 信息查询筛选导出系统 (未完待续)

2022-12-25

《freexyn编程实例视频教程系列36 Matlab GUI教程》文档讲义

实例演示 2.1简易计算器 2.2信息注册系统 2.3图像调整界面 2.4图像演示界面 2.5闹铃/定时器 2.6迷宫图游戏 2.7电子琴 2.8图像处理菜单 2.9数据图表

2022-12-25

freexyn编程实例视频教程系列1:Matlab基础入门(PDF课件讲义)

Matlab基础入门,包括界面设置、矩阵、运算符、数据类型、脚本和函数以及符号运算等 作者:freexyn 目录 1.0 概述 入门 1.1 认识软件 1.2 创建变量 1.3 调用函数 1.4 脚本编程 1.5 语法高亮 矩阵 1.6 创建矩阵 1.7 创建矩阵的函数 1.8 连接矩阵 1.9 矩阵索引 1.10 矩阵元素修改 1.11 重塑矩阵 1.12 矩阵属性 1.13 特殊矩阵形式 1.14 多维数组 1.15 性能优化 运算符 1.16 算术运算 1.17 算术常用函数 1.18 逻辑运算 1.19 关系运算 1.20 运算符的优先级 1.21 兼容性 数据类型 1.22 整数型 1.23 浮点型 1.24 Inf和NaN 1.25 显示格式 1.26 字符型 1.27 特殊字符 1.28 混合连接的类型 1.29 混合运算的类型 1.30 字符串型 1.31 缺失字符串 1.32 格式化文本 1.33 字符型与数值型的转换 1.34 元胞数组 1.35 元胞数组的修改 1.36 结构数组 1.37 结构数组的处理 1.38 表 1.39 表的数据处理 1.40 表的读入写

2022-08-14

freexyn编程实例视频教程系列47:Matlab与遗传算法(作者:freexyn)

freexyn编程实例视频教程系列47 Matlab与遗传算法 主要内容: 算法概念/流程/选择/交叉/变异/精英个体/迭代终止/可视化/过程显示/混合优化/非线性约束问题/整数约束优化问题 文档目录: 47.0 概述 47.1 算法概念和流程 47.2 初始化种群 47.3 选择 47.4 交叉和变异 47.5 精英个体 47.6 迭代终止和可视化 47.7 输出和过程显示 47.8 优化与全局优化(智能算法)的比较 47.9 混合优化 47.10 非线性约束问题 47.11 整数优化问题 End

2022-08-14

《Matlab编程实例视频教程系列 31:Matlab作图与动画 ( 绘图 )》课件讲义

freexyn 编程实例视频教程系列 31 Matlab 作图 与动画 ( 绘图 ) 31.0 概述 1.主要内容 1.1 运用 Matlab 进行作图/数据可视化/动画 1.2 通过编程实例体会运用 Matlab 进行作图的思路 课程目录 31.1 plot基本用法 31.2 线型、标记和颜色 31.3 标题、标签和图例 31.4 多图、子图和网格 31.5 双y轴图像 31.6 条形图 31.7 直方图 31.8 饼图 31.9 阶梯图、散点图、针状图 31.10 填充图、对数图、热图 31.11 函数绘图 31.12 极坐标绘图 31.13 坐标刻度和标签 31.14 极坐标刻度和标签 31.15 多边形绘图 31.16 曲面图汇总 31.17 三维图汇总 31.18 圆柱、球、椭圆 31.19 图像颜色 31.20 等高线 31.21 向量图 31.22 图像注释、文本 31.23 线条 31.24 调整坐标轴范围、长度 32.25 调整可视化效果 31.26 坐标区对象和图形对象 31.27 动画(动态图像)

2022-08-17

《Matlab编程实例视频教程系列22:Matlab优化专题》课程文档

freexyn编程实例视频教程系列22 Matlab优化专题 1.主要内容 运用Matlab编程解决一元/多元函数求最小值/线性规划/整数规划/二次规划/最小二乘问题/曲线拟合等优化问题; 2.课程目录 22.0 概述 22.1 一元函数最小值fminbnd 22.2 多元函数最小值fminsearch 22.3 带约束多元函数最小值fmincon 22.4 无约束多元函数最小值fminunc 22.5 半无限约束多元函数最小值fseminf 22.6 多目标函数最优点达到问题fgoalattain 22.7 多目标函数最大值最小值问题fminimax 22.8 线性规划linprog 22.9 混合整数线性规划intlinprog 22.10 二次规划quadprog 22.11 线性最小二乘问题lsqlin 22.12 非负线性最小二乘问题lsqnonneg 22.13 非线性函数拟合问题lsqcurvefit 22.14 非线性最小二乘问题lsqnonlin End

2022-08-17

《Matlab编程实例视频教程系列33:Matlab 导入导出》文档讲义

freexyn编程实例视频教程系列33 Matlab 导入导出 1.主要内容 运用Matlab对外部文件数据进行导入导出; 数据类型包括数值型、文本型以及混合数据等; 文件格式涉及dat、txt、csv、xls等; 编程案例若干。 2.目录 33.0 概述 33.1 数值型数据写出到文件dlmwrite 33.2 混合数据写出到文件writetable 33.3 格式化数据写出到文件fprintf 33.4 读取数值型数据dlmread 33.5 读取混合数据readtable 33.6 Excel数据的导入和导出 33.7 载入数据importdata 33.8 读取格式化数据textscan 33.9 读取格式化的数据fscanf 33.10 实例 分类提取文本数据 33.11 逐行读取数据fgetl 33.12 读取二进制数据fread 33.13 移动文件指针fseek 33.14 二进制数据写出到文件fwrite 33.15 格式化混合数据写出到文件fprintf 33.16 导入工具 33.17 实例 非常规文本或大型文件 33.18 实例 同时处理多个文件 33.19 实

2022-08-17

Matlab编程实例视频教程系列43:神经网络入门和拟合(作者:freexyn)

freexyn编程实例视频教程系列43 Matlab与神经网络 函数拟合和分类 43.0概述 43.1从神经网络用于函数拟合开始讲起 43.2神经网络结构(理论课) 43.3传递函数 43.4网络训练 43.5 网络初始化和配置 43.6 数据预处理 43.7 性能评价与作图 43.8 数据分组 43.9 工作流、属性和训练记录 43.10 防止过拟合与改善网络性能 43.11 模式识别pattennet 43.12 模式识别相关 43.13 实例 数字图像识别 43.14 前馈神经网络 43.15 自定义神经网络 43.16 *算法前传(浅显理论课) 43.17 LM算法trainlm 43.18 贝叶斯正则化trainbr 43.19 *比例共轭梯度法trainscg 43.20 弹性反向传播算法trainrp 43.21 算法汇总比较 43.22 生成函数和仿真模块 43.23 交互方式和样本数据 43.24 感知器 43.25 线性神经网络 43.26 自适应线性神经网络 (写不下了)

2022-08-14

freexyn编程实例教程45 Matlab深度学习 PDF课件

freexyn编程实例视频教程系列45 Matlab与深度学习(卷积神经网络) 主要内容 运用Matlab编程处理深度学习在图像的分类识别和回归预测方面的应用,主要内容就是学习卷积神经网络。 目 录 45.0 概述 1 45.1一个实例入门深度学习 1 45.2 图像数据集读取并输入网络:表 table 2 45.3 网络分类识别并计算准确率classify 3 45.4 图像输入层imageInputLayer 3 45.5 卷积的原理 4 45.6 卷积层convolution2dLayer 5 45.7 批量归一化层batchNormalizationLayer 5 45.8 修正线性单元reluLayer 5 45.9 最大池化层maxPooling2dLayer 5 45.10 全连接层fullyConnectedLayer 6 45.11 归一化指数层softmaxLayer 6 45.12 分类输出层classificationLayer 6 45.13 卷积神经网络(工作原理和运行机制) 7 45.14 激活/特征提取activations 7 45.15 traini

2022-07-20

MNIST数据集(已处理,Matlab直接使用)

MNIST数据集(官网下载)文件夹为官网下载的数据集,共十个分类,7万个图像,图像大小为28x28的灰度图像; 2 mnist0文件夹是MNIST数据集经过读取后,另存的图像格式和mat文件格式的数据; 3 mnist2文件夹是MNIST数据集的一个子集,取原数据集1/2的数据量(3.5万个图像); 4 mnist10文件夹是MNIST数据集的一个子集,取原数据集1/10的数据量(7000个图像),推荐学习和练习使用; 5 mnist100文件夹是MNIST数据集的一个子集,取原数据集1/100的数据量(700个图像); 6 下载、解压、读取,另存等方法,看视频66.35

2022-07-16

freexyndb数据集(长度预测/角度预测/颜色分类)

该数据集包含1000张图像,每张图像仅包含一条随机长度、随机角度和随机颜色的线条,因此,该数据集可用于长度、角度的回归预测,也可用于颜色的分类识别,适用于广大初学者,作为深度学习卷积神经网络的小型练习数据集,非常便捷,该数据集的预测和分类特性很好,很有代表性,训练时间短,普通个人电脑应用无压力,可代替大型数据集进行调参试验,强烈推荐下载使用。 该数据集包含1000张图片,分为三种应用场景(分别对应了三个文件夹): 1 长度的预测; 2 角度的预测; 3 颜色的分类。 数据集使用方法(Matlab读取为例): 1 使用datastore方式读取图像数据(长度预测和角度预测,需要从文件名称中提取response); 2 使用load函数加载mat文件(颜色分类,只能使用datastore,因为需要通过子文件夹名称获取分类labels)。

2022-07-10

布匹缺陷检测-小样本数据集(很典型,附教程)

1 该数据集从网上收集并整理而成; 2 该数据集包含25张图像(其中,无缺陷、A缺陷、B缺陷、C缺陷、D缺陷各5张图像),图像大小256x256x3; 3 数据集使用方法(Matlab读取为例): (1)使用datastore方式读取图像数据,应用于深度学习卷积网络; (2)分类预测应用的编程实例看视频45.26

2022-07-16

CIFAR-10数据集(好用的子集,方便个人学习使用,附教程)

cifar-10-matlab.tar.gz为官网下载的cifar-10数据集,共十个分类,60000个图像,图像大小为32x32x3的彩色图像; 2 cifar10sub文件夹是cifar-10数据集的一个子集,共十个分类,7000个图像,数据量相对较小,方便学习使用; 3 下载、解压、读取,另存等方法,看视频66.36

2022-07-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除