动态规划——0/1背包问题详解(附C++完整代码)

问题分析

背包问题可以通过贪心、动态规划等多种算法解决实现。本文章从动态规划的角度求解0/1背包问题。动态规划原理:是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法方法。0/1背包问题本质上是寻找全局最优解的问题,在尽量消耗小的背包容量的前提下,获得更多的价值。

算法解析

①首先要对w(容积权重)和v(价值量)两个数组进行初始化,注意因为后面我们在进行动态规划求解时,需要考虑到前一个状态的解,因此这两个数组需要留出数组首位置防止越界。

for(int i=1;i<=thingNum;i++){
		cin>>w[i]>>v[i];
	}

②然后我们要计算出每个容量状态下的最优解作为子问题的解,以便我们求出想要的最优解。这里我们从前向后更新我们的dp数组,即得到每个容量状态的解。

void findMax(){
	for(int i=1;i<=thingNum;i++){
		for(int j=1;j<=bagContain;j++){
			if(j<w[i]){
				dp[i][j] = dp[i-1][j];//容量不够,仍为上一个状态的最优解 
			}
			else if(dp[i-1][j]>(dp[i-1][j-w[i]]+v[i])){//更新后的解并不如上一个状态的解更优,解保持上一个状态的解 
					dp[i][j] = dp[i-1][j];
				}
				else{
					//遇到更优的解就更新 
					dp[i][j] = (dp[i-1][j-w[i]]+v[i]);
				}
		}
	}
}

③之后去寻找最优解的物品,从最大的问题开始,分解成更多的小问题,不断递归求解出小问题,最外层的最大问题便可以得出最终的最优解。

void findConsist(int thingNum,int bagContain){
	if(thingNum>0){//没有分解为最小问题,继续递归 
		if(dp[thingNum-1][bagContain]==dp[thingNum][bagContain]||bagContain<w[thingNum]){
			consist[thingNum]=0;//没有找到更优解或者背包的容量已经不够了,不要这件物品 
			findConsist(thingNum-1,bagContain);
		}
		else{
			consist[thingNum] = 1;//找到更优解,将此物品加入背包 
			findConsist(thingNum-1,bagContain-w[thingNum]);
		}
	} 
}

④结果展示:
在这里插入图片描述

完整代码

#include<iostream>
using namespace std;
int w[100]={0},v[100]={0},dp[100][100] = {0};
int thingNum,bagContain;//物品数量和背包容量 
int consist[100]={0};


void findConsist(int thingNum,int bagContain){
	if(thingNum>0){//没有分解为最小问题,继续递归 
		if(dp[thingNum-1][bagContain]==dp[thingNum][bagContain]||bagContain<w[thingNum]){
			consist[thingNum]=0;//没有找到更优解或者背包的容量已经不够了,不要这件物品 
			findConsist(thingNum-1,bagContain);
		}
		else{
			consist[thingNum] = 1;//找到更优解,将此物品加入背包 
			findConsist(thingNum-1,bagContain-w[thingNum]);
		}
	} 
}


void findMax(){
	for(int i=1;i<=thingNum;i++){
		for(int j=1;j<=bagContain;j++){
			if(j<w[i]){
				dp[i][j] = dp[i-1][j];//容量不够,仍为上一个状态的最优解 
			}
			else if(dp[i-1][j]>(dp[i-1][j-w[i]]+v[i])){//更新后的解并不如上一个状态的解更优,解保持上一个状态的解 
					dp[i][j] = dp[i-1][j];
				}
				else{
					//遇到更优的解就更新 
					dp[i][j] = (dp[i-1][j-w[i]]+v[i]);
				}
		}
	}
}


int main(){
	cin>>thingNum>>bagContain;
	for(int i=1;i<=thingNum;i++){
		cin>>w[i]>>v[i];
	}
	findMax();
	for(int i=0;i<=thingNum;i++){
		for(int j=1;j<bagContain+1;j++){
			cout<<dp[i][j]<<"\t";
		} 
		cout<<endl;
	}
	findConsist(thingNum,bagContain);
	for(int i=1;i<=thingNum;i++){
		if(consist[i]==1){
			cout<<i<<"号物品 ";
		}
	}
	return 0;
} 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

freezing?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值