辣鸡csdn换了些正常的广告很欣慰。QwQ
lcs问题很经典
在两个序列中寻找最长的不需要连续的相同的序列
如果对序列没有任何要求的话大多数人都用网上流传已久的NM做法
dp[i][j]表示第一个序列到第i位,第二个序列到第j位的最长的lcs
if(s[i]==t[j])dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
比较简单直接粘代码
#include<cstdio>
#include<cstring>
#include<utility>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdlib>
#include<ctime>
using namespace std;
inline int read()
{
char ch='*';
int f=1;
while(!isdigit(ch=getchar())) if(ch=='-') f=-1;
int num=ch-'0';
while(isdigit(ch=getchar())) num=num*10+ch-'0';
return num*f;
}
const int maxn = 1005;
char s[maxn],t[maxn];
int f[maxn][maxn];
int main()
{
scanf("%s%s",s+1,t+1);
int n=strlen(s+1);
int m=strlen(t+1);
int ans=0;
for(int i=1;i<=m;i++){
//int tot=ans;ans=0;
for( int j=1;j<=n;j++)
{
//if(i==1||j==1) f[i][j]=0;
if(s[j]==t[i]) f[i][j]=f[i-1][j-1]+1;
else f[i][j]=max(f[i-1][j],f[i][j-1]);
ans=max(f[i][j],ans);
}
}
cout<<ans<<endl;
return 0;
}
那么还有第二种网上广为流传的nlogn做法,这个做法对每个字符串中不能有重复的字符。那么我们把每个字符和位置绑在一起。就是在第二个字符串中把每个字符改成在第一个字符串中出现的位置,没出现的就是0.此时寻找最长公共子序列就是在寻找最长上升子序列。
这个在解法可以去洛谷看最长公共子序列。
NlogN的新做法
此做法要求某条字符串比较短,大概可以N^2的空间复杂度不会爆空间。
首先这个方法是van(yanQval)讲的。orz
显然在很多情况下我们的某个字符串是很难没有重复的。我们先将那些鬼畜的字符离散化一下,离散化成正常的数字。(如果只有字符的话直接看作ascll码就好)那么我们考虑记录每个字符下一次出现的位置。(做法很简单就是倒着循环一遍,然后很随意的就可以找出来)。然后我们这次学习我们优化lis问题时候的做法。
我们用dp[i][j]表示第一个字符串匹配到i,lcs的长度为j时,在另一个字符串中匹配到的最靠前的位置。
那么显然我们有
if(dp[i][j]<=m){
dp[i+1][j]=min(dp[i+1][j],dp[i][j]);
dp[i+1][j+1]=min(dp[i+1][j+1],nxt[dp[i][j]][b[i+1]-'a']);
}
那么依然可以很轻松的求出
但是似乎对于这个问题的普遍情况下是没有什么很好的解决方案的。