Faster RCNN训练FLIR红外线数据集

1. Fater RCNN检测网络下载

网络学习视频
[源码地址]https://github.com/bubbliiiing/faster-rcnn-pytorch

2. FLIR 数据集准备

数据集的具体格式和内容请看
FLIR数据集介绍

在该数据集中提供的annotations文件为json,需要将其转换为xml,由于我之前使用yolov5网络训练,所以目前我使用的转换方法是从json转换到txt,目前我从txt进一步转换为xml
json转换为txt

可能有些朋友在转.txt文件中存在很多问题,我直接给大家将我转的传到了网盘,大家可以直接下载
链接:链接:https://pan.baidu.com/s/1H1YNqXWF_Ee632a8E3Tngg
提取码:1c4n

txt转换xml

链接:https://pan.baidu.com/s/1QxbdV0zbzNcQFoo4oQ1fgg
提取码:smua

3. 网络调整

在这里插入图片描述
1.准备数据集

我们需要将生成的image图像xml标签文件放置到VOCdevkit->VOC2007->Annotations和JPEGImages中。

2.制作类文件

如图,在model_data中创建flir.txt文件,内容为People, Bicycles, Cars
在这里插入图片描述
3. 生成对应训练文件

检查是否有txt文件,如果有删除,需要生成对应FLIR数据集的txt文件
在这里插入图片描述
点击voc_annotation.py,修改里面classes_path = model_data/flir.txt,查找jpg修改为jpeg即可。
在这里插入图片描述
点击运行,会生成刚才删除的txt文件,可以打开看看,2007_train.txt中是训练图像的存储地址和标签。
在这里插入图片描述

4. 开始训练

点击train.py文件,修改classes_path = 'model_data/flir.txt'。点击运行按钮开始训练。

在这里插入图片描述

5. 预测

将val验证集的图像放入在这里插入图片描述
修改预测的权重文件(选择loss和val-loss都小的权重值即可),修改类文件位置。
在这里插入图片描述
在这里插入图片描述
更改输入文件名称,复制改成导入的文件名称。
在这里插入图片描述

运行predict.py程序,生成img_out图像。
在这里插入图片描述
检测结果如下图所示:
在这里插入图片描述
在这里插入图片描述

总结

对比我之前训练的yolov5来说,这个检测效果感觉没那么好,但是相对于纯视觉来说已经好多了,削弱了光线的影响。

最后,我发现我训练的结果中自行车Bicycles的检测有点问题,如果有博友按照这个方法训练完成了,可以看看Bicycles类能不能正常检测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:黑客帝国 设计师:我叫白小胖 返回首页
评论 8

打赏作者

Fighting_1997

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值