【数据结构练习】 求区间第K大数的几种方法

这类求数列上区间第K大数的题目非常非常多(当然题目要求通常是求区间第K小)。

比如HDOJ 2665POJ 2104SOJ 3147SOJ 3010SOJ 3102(只计算一次),POJ 2761(区间不包含)。

求解这个问题的方法也非常多,在这里对几种我认为比较常见的方法做一下总结,今后也会不断补充。

当然,几乎所有的高级数据结构都可以用来求区间第K大数,我也认为这是初学一个数据结构时的一个很好的练习。

高级数据结构是我的软肋之一,如果代码写的有什么不优越的地方,欢迎神犇指教 > < 。


1、快速划分

最简单的方法,当然就是用类似快排的方法做快速划分,

每次随机选取一个数作为“主元”,以“主元”为分界线把当前区间的数划分成两部分,并找出“主元”的精确位置,然后不断递归。

关于这个算法的讲解可以看MIT的《算法导论》公开课。

无奈我太蒟蒻,怎么都是TLE,大家姑且一看:

#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<climits>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;

const int MAXN=110000;
int a[MAXN],b[MAXN];
char s[2000000];

int quicksort(int p, int q)
{
    int k=p+((int)rand()%(q-p+1));
    swap(b[k],b[p]);
    int i=p;
    for(int j=p+1; j<=q; j++)
    {
        if(b[j]<b[p])
        {
            i++;
            swap(b[i],b[j]);
        }
    }
    swap(b[i],b[p]);
    return i-p+1;
}

int solve(int p, int q, int k)
{
    int tmp;
    while((tmp=quicksort(p,q))!=k)
    {
        if(tmp<k)
        {
            p+=tmp;
            k-=tmp;
        }
        else
        {
            q=p+tmp-1;
        }
    }
    return b[p+tmp-1];
}

int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)==2)
    {
        for(int i=0; i<n; i++)
        {
            scanf("%d",&a[i]);
        }
        while(m--)
        {
            int l,r,k;
            scanf("%d%d%d",&l,&r,&k);
            memcpy(b,a,n*sizeof(int));
            printf("%d\n",solve(l-1,r-1,k));
        }
    }
    return 0;
}

2、二叉堆

用一个容量为K的二叉堆,把当前区间的元素全部入堆,但是每次只保留这个堆中前K小的数,最后这个堆中的堆顶元素即为所求

这个算法肯定更加是TLE的,我相信即使手写堆也多半时过不了的,给大家写一段代码示意一下:

#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<climits>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;

const int MAXN=110000;
int a[MAXN];
priority_queue<int> q;

int main()
{
    int cas;
    scanf("%d",&cas);
    while(cas--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=0; i<n; i++)
        {
            scanf("%d",&a[i]);
        }
        while(m--)
        {
            int l,r,k;
            scanf("%d%d%d",&l,&r,&k);
            l--;
            r--;
            while(!q.empty())
            {
                q.pop();
            }
            int cot=0;
            for(int i=l; i<=r; i++)
            {
                q.push(a[i]);
 
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值