这类求数列上区间第K大数的题目非常非常多(当然题目要求通常是求区间第K小)。
比如HDOJ 2665,POJ 2104,SOJ 3147,SOJ 3010,SOJ 3102(只计算一次),POJ 2761(区间不包含)。
求解这个问题的方法也非常多,在这里对几种我认为比较常见的方法做一下总结,今后也会不断补充。
当然,几乎所有的高级数据结构都可以用来求区间第K大数,我也认为这是初学一个数据结构时的一个很好的练习。
高级数据结构是我的软肋之一,如果代码写的有什么不优越的地方,欢迎神犇指教 > < 。
1、快速划分
最简单的方法,当然就是用类似快排的方法做快速划分,
每次随机选取一个数作为“主元”,以“主元”为分界线把当前区间的数划分成两部分,并找出“主元”的精确位置,然后不断递归。
关于这个算法的讲解可以看MIT的《算法导论》公开课。
无奈我太蒟蒻,怎么都是TLE,大家姑且一看:
#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<climits>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
const int MAXN=110000;
int a[MAXN],b[MAXN];
char s[2000000];
int quicksort(int p, int q)
{
int k=p+((int)rand()%(q-p+1));
swap(b[k],b[p]);
int i=p;
for(int j=p+1; j<=q; j++)
{
if(b[j]<b[p])
{
i++;
swap(b[i],b[j]);
}
}
swap(b[i],b[p]);
return i-p+1;
}
int solve(int p, int q, int k)
{
int tmp;
while((tmp=quicksort(p,q))!=k)
{
if(tmp<k)
{
p+=tmp;
k-=tmp;
}
else
{
q=p+tmp-1;
}
}
return b[p+tmp-1];
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
}
while(m--)
{
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
memcpy(b,a,n*sizeof(int));
printf("%d\n",solve(l-1,r-1,k));
}
}
return 0;
}
2、二叉堆
用一个容量为K的二叉堆,把当前区间的元素全部入堆,但是每次只保留这个堆中前K小的数,最后这个堆中的堆顶元素即为所求
这个算法肯定更加是TLE的,我相信即使手写堆也多半时过不了的,给大家写一段代码示意一下:
#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<climits>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
const int MAXN=110000;
int a[MAXN];
priority_queue<int> q;
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
}
while(m--)
{
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
l--;
r--;
while(!q.empty())
{
q.pop();
}
int cot=0;
for(int i=l; i<=r; i++)
{
q.push(a[i]);