【回溯算法】【Python实现】最大团问题

问题描述

  • 给定无向图 G = ( V , E ) G = (V , E) G=(V,E),如果 U ⊆ V U \subseteq V UV,且对任意 u u u v ∈ U v \in U vU ( u , v ) ∈ E (u , v) \in E (u,v)E,则称 U U U G G G的完全子图

  • G G G的完全子图 U U U G G G的一个团当且仅当 U U U不包含在 G G G的更大的完全子图中, G G G的最大团是指 G G G中所含顶点数最多的团

  • 如果 U ⊆ V U \subseteq V UV且对任意 u u u v ∈ U v \in U vU,有 ( u , v ) ∉ E (u , v) \notin E (u,v)/E,则称 U U U G G G的空子图

  • G G G的空子图 U U U G G G的独立集当且仅当 U U U不包含在 G G G的更大的空子图中, G G G的最大独立集是 G G G中所含顶点数最多的独立集

  • 对于任意无向图 G = ( V , E ) G = (V , E) G=(V,E),其补图 G ˉ = ( V ′ , E ′ ) \bar{G} = (V^{'} , E^{'}) Gˉ=(V,E)定义为: V ′ = V V^{'} = V V=V E ′ = {   ( u , v ) ∣ ( u , v ) ∉ E   } E^{'} = \set{(u , v) \mid (u , v) \notin E} E={(u,v)(u,v)/E}

  • 如果 U U U G G G的完全子图,则它是 G ˉ \bar{G} Gˉ的空子图,反之亦然,因此, G G G的团与 G ˉ \bar{G} Gˉ的独立集之间存在一一对应关系,特别地, U U U G G G的最大团,当且仅当 U U U G ˉ \bar{G} Gˉ的最大独立集

  • 无向图 G G G G G G的补图 G ˉ \bar{G} Gˉ如下图所示

1


回溯算法

  • G G G的最大团和最大独立集问题都可以看作图 G G G的顶点集 V V V的子集选取问题,因此,可用子集树表示问题的解空间,解最大团问题的回溯法与解装载问题的回溯法十分相似
  • 设当前扩展结点 Z Z Z位于解空间树的第 i i i层,在进入左子树前,必须确认从顶点 i i i到已选入的顶点集中每个顶点都有边相连,在进入右子树前,必须确认还有足够多的可选择顶点,使得算法有可能在右子树中找到更大的团

Python实现

def find_maximum_clique(graph):
    n = len(graph)
    vertices = list(range(n))

    max_clique = []

    def is_clique(current_clique):
        # 约束函数: 判断给定的顶点集合是否构成一个团(完全子图)
        for i in range(len(current_clique)):
            for j in range(i + 1, len(current_clique)):
                if not graph[current_clique[i]][current_clique[j]]:
                    return False

        return True

    def bound(current_clique, vertices):
        # 限界函数
        return len(current_clique) + len(vertices)

    def backtrack(vertices, current_clique):
        nonlocal max_clique

        if not vertices:
            if len(current_clique) > len(max_clique):
                max_clique.clear()
                max_clique.extend(current_clique)

            return

        vertex = vertices.pop(0)
        current_clique.append(vertex)

        neighbors = []
        for v in vertices:
            if graph[vertex][v]:
                neighbors.append(v)

        # 选择当前顶点并加入团
        if is_clique(current_clique):
            backtrack(neighbors, current_clique)

        # 恢复回溯前状态
        current_clique.pop()

        # 不选择当前顶点
        if bound(current_clique, vertices) > len(max_clique):
            backtrack(vertices, current_clique)

    backtrack(vertices, [])

    return max_clique


graph = [
    [0, 1, 0, 1, 1],
    [1, 0, 1, 0, 1],
    [0, 1, 0, 0, 1],
    [1, 0, 0, 0, 1],
    [1, 1, 1, 1, 0]
]

maximum_clique = find_maximum_clique(graph)

print(f'最大团: {maximum_clique}')
最大团: [0, 1, 4]

时间复杂性

  • 解最大团问题的回溯算法所需的计算时间为 O ( n 2 n ) O(n 2^{n}) O(n2n)

  • 46
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最大团问题是在给定的无向图中寻找一个最大的点集,使得这个点集中的每一对点都有边相连。这个问题是NP完全问题,没有多项式时间的算法可以解决。 但是,我们可以使用回溯算法来求解最大团问题。具体步骤如下: 1. 选取一个点,将其加入当前的团中。 2. 用当前团中的点去扩展新的团。具体来说,我们遍历当前团中的每个点,找出与它相邻的点,并将这些点加入到一个候选点集中。 3. 对于候选点集中的每个点,我们都尝试将其加入到当前团中,并递归处理剩下的点。 4. 如果当前团中的点数大于之前的最大团,那么更新最大团。 5. 回溯到上一步,撤销尝试加入的点。 下面是一个简单的Python程序,实现了这个算法: ```python def find_maximum_clique(graph): n = len(graph) max_clique = [] def expand(current_clique, candidates): nonlocal max_clique if not candidates: if len(current_clique) > len(max_clique): max_clique = current_clique[:] return if len(current_clique) + len(candidates) <= len(max_clique): return for v in candidates: if all(graph[v][u] for u in current_clique): new_candidates = [u for u in candidates if graph[v][u]] expand(current_clique + [v], new_candidates) expand([], list(range(n))) return max_clique ``` 这个程序的输入是一个邻接矩阵,表示无向图中每对节点之间是否有边相连。输出是一个最大团。 我们先定义了一个嵌套函数expand,它的参数是当前团中的点和候选点集。这个函数首先判断是否已经遍历完了所有的候选点,如果是的话就更新最大团(如果当前团更大的话)。然后我们尝试将候选点集中的每个点加入到当前团中,如果这个点与当前团中的所有点都有边相连,那么我们就递归处理剩下的点。 在主函数中,我们首先计算图中的节点数,然后调用expand函数,给定一个空的团和所有的节点作为输入。最后,我们返回找到的最大团。 下面是一个简单的示例,演示了如何使用这个程序: ```python graph = [[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]] print(find_maximum_clique(graph)) # [0, 1, 2] ``` 在这个示例中,我们定义了一个简单的无向图,然后调用find_maximum_clique函数来查找最大团。输出结果是[0, 1, 2],这表示节点0、1和2组成了一个最大团。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值