【形式语言与自动机】【《形式语言与自动机理论(第4版)》笔记】第一章:绪论

1.1|集合的基础知识

集合论的发展
  • 集合论是德国数学家康托于 1874 1874 1874年创立的,经历了两个阶段
    • 1908 1908 1908年以前称为朴素集合论,又称为康托集合论,存在集合悖论问题
    • 哲墨罗于 1908 1908 1908年提出了第一个集合论公理系统,经富兰科尔和斯库利姆改进和补充,形成了 Z F ZF ZF公理系统,同年,罗素给出了关于集合型的层次理论——类型论
集合的基数
  • 如果集合 A A A与集合 B B B之间有一个一一对应,则称它们具有相同的基数
  • 通常用 ∣ A ∣ |A| A表示集合 A A A的基数
  • 集合的基数又称为集合的势
无穷集
  • 无穷集可以分成可数集和不可数集
    • S S S是一个无穷集,如果集合 S S S与自然数集 N N N具有相同的基数,则称 S S S是可数集
    • 否则,称 S S S是不可数集
包集
  • 如果集合 A A A是集合 B B B的子集,则称集合 B B B是集合 A A A的包集
等价符号
  • ⇔ \Leftrightarrow 可用 i f f iff iff表示
集族
  • 当一个集合的元素都是集合时,这样的集合称为集族
对称差
  • A A A B B B是两个集合, A A A B B B的对称差由属于 A A A但不属于 B B B,以及属于 B B B但不属于 A A A的所有元素组成,记作 A ⊕ B A \oplus B AB

  • A ⊕ B = ( A ∪ B ) − ( A ∩ B ) = ( A − B ) ∪ ( B − A ) A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A) AB=(AB)(AB)=(AB)(BA)

幂集
  • 对任意集合 A A A B B B,有 2 A ∩ B = 2 A ∩ 2 B 2^{A \cap B} = 2^{A} \cap 2^{B} 2AB=2A2B

1.2|关系

二元关系
  • A A A B B B是两个集合,任意的 R ⊆ A × B R \subseteq A \times B RA×B R R R A A A B B B的二元关系
  • R R R A A A上的二元关系
    • 如果对任意 a ∈ A a \in A aA,有 ( a , a ) ∉ R (a , a) \notin R (a,a)/R,则称 R R R是反自反的
    • 如果对任意 a a a b ∈ A b \in A bA,当 ( b , a ) ∈ R (b , a) \in R (b,a)R ( a , b ) ∈ R (a , b) \in R (a,b)R同时成立时,必有 a = b a = b a=b,则称 R R R是反对称的
  • 自反、对称、传递称为关系的三歧性
等价类
  • R R R是集合 S S S上的等价关系,则满足如下要求的 S S S的划分 S 1 S_{1} S1 S 2 S_{2} S2 ⋯ \cdots S n S_{n} Sn ⋯ \cdots 称为 S S S关于 R R R的等价划分, S i S_{i} Si称为等价类

    • S = S 1 ∪ S 2 ∪ ⋯ ∪ S n ∪ ⋯ S = S_{1} \cup S_{2} \cup \cdots \cup S_{n} \cup \cdots S=S1S2Sn

    • 如果 i ≠ j i \neq j i=j,则 S i ∩ S j = ∅ S_{i} \cap S_{j} = \emptyset SiSj=

    • 对任意 i i i S i S_{i} Si中的任意两个元素 a a a b b b a R b a R b aRb恒成立

    • 对任意 i i i j j j i ≠ j i \neq j i=j S i S_{i} Si中的任意元素 a a a S j S_{j} Sj中的任意元素 b b b a R b a R b aRb恒不成立

  • R R R S S S分成的等价类的个数称为 R R R S S S上的指数, R R R可将 S S S分成无穷多个等价类,此时称 R R R具有无穷指数

关系的合成
  • R 1 ⊆ A × B R_{1} \subseteq A \times B R1A×B A A A B B B的关系, R 2 ⊆ B × C R_{2} \subseteq B \times C R2B×C B B B C C C的关系,则 R 1 R_{1} R1 R 2 R_{2} R2的合成 R 1 ∘ R 2 R_{1} \circ R_{2} R1R2 A A A C C C的关系

R 1 ∘ R 2 = {   ( a , c ) ∣ ∃ ( a , b ) ∈ R 1 , ( b , c ) ∈ R 2   } R_{1} \circ R_{2} = \set{(a , c) \mid \exist (a , b) \in R_{1} , (b , c) \in R_{2}} R1R2={(a,c)(a,b)R1,(b,c)R2}

递归定义
  • 又称为归纳定义,可以用来定义一个集合,由 3 3 3部分组成

    • 基础:指出该集合最基本的元素
    • 归纳:指出用集合中的元素来构造集合的新元素的规则
    • 极小性限定:指出一个对象是所定义的集合中的元素的充要条件是对该对象可以通过有限次地使用基础和归纳条款中所给的规定构造出来
  • R R R S S S上的二元关系,则 R n R^{n} Rn递归定义如下

    • R 0 = {   ( a , a ) ∣ a ∈ S   } R^{0} = \set{(a , a) \mid a \in S} R0={(a,a)aS}

    • R i = R i − 1 R ( i = 1 , 2 , 3 , ⋯   ) R^{i} = R^{i - 1} R (i = 1 , 2 , 3 , \cdots) Ri=Ri1R(i=1,2,3,)

归纳法证明
  • 归纳法证明与递归定义相对应,由三步组成

    • 基础:证明该集合的最基本元素具有性质 P P P

    • 归纳:证明如果被定义集合的元素 a a a b b b ⋯ \cdots 具有性质 P P P,则用某种运算、函数或组合规则对这些元素进行处理后所得的结果也具有性质 P P P

    • 由归纳法原理,集合中的所有元素具有性质 P P P——集合具有性质 P P P

例题
问题
  • 对有穷集合 A A A,证明 ∣ 2 A ∣ = 2 ∣ A ∣ |2^{A}| = 2^{|A|} 2A=2A
解答
  • A A A为一个有穷集合,现施归纳于 ∣ A ∣ |A| A

  • 基础:当 ∣ A ∣ = 0 |A| = 0 A=0时, 2 A = {   ∅   } 2^{A} = \set{\emptyset} 2A={},从而 ∣ 2 A ∣ = ∣ {   ∅   } ∣ = 1 |2^{A}| = |\set{\emptyset}| = 1 2A={}=1 2 ∣ A ∣ = 2 0 = 1 2^{|A|} = 2^{0} = 1 2A=20=1,所以 ∣ 2 A ∣ = 2 ∣ A ∣ |2^{A}| = 2^{|A|} 2A=2A ∣ A ∣ = 0 |A| = 0 A=0成立

  • 归纳

    • 假设 ∣ A ∣ = n |A| = n A=n时结论成立, n ≥ 0 n \geq 0 n0,往证当 ∣ A ∣ = n + 1 |A| = n + 1 A=n+1时结论成立

    • A = B ∪ {   a   } A = B \cup \set{a} A=B{a} a ∉ B a \notin B a/B ∣ A ∣ = ∣ B ∪ {   a   } ∣ = ∣ B ∣ + ∣ {   a   } ∣ = ∣ B ∣ + 1 |A| = |B \cup \set{a}| = |B| + |\set{a}| = |B| + 1 A=B{a}=B+{a}=B+1

    • 2 A = 2 B ∪ {   C ∪ {   a   } ∣ C ∈ 2 B   } 2^{A} = 2^{B} \cup \set{C \cup \set{a} \mid C \in 2^{B}} 2A=2B{C{a}C2B}

    • 由于 a ∉ B a \notin B a/B,所以 2 B ∩ {   C ∪ {   a   } ∣ C ∈ 2 B   } = ∅ 2^{B} \cap \set{C \cup \set{a} \mid C \in 2^{B}} = \emptyset 2B{C{a}C2B}=

    • 可以构造一个一一对应 f : {   C ∪ {   a   } ∣ C ∈ 2 B   } → 2 B f : \set{C \cup \set{a} \mid C \in 2^{B}} \rightarrow 2^{B} f:{C{a}C2B}2B,所以 ∣ {   C ∪ {   a   } ∣ C ∈ 2 B   } ∣ = ∣ 2 B ∣ |\set{C \cup \set{a} \mid C \in 2^{B}}| = |2^{B}| {C{a}C2B}=2B

    • ∣ 2 A ∣ = ∣ 2 B ∪ {   C ∪ {   a   } ∣ C ∈ 2 B   } ∣ = ∣ 2 B ∣ + ∣ {   C ∪ {   a   } ∣ C ∈ 2 B   } ∣ = ∣ 2 B ∣ + ∣ 2 B ∣ = 2 ∣ 2 B ∣ |2^{A}| = |2^{B} \cup \set{C \cup \set{a} \mid C \in 2^{B}}| = |2^{B}| + |\set{C \cup \set{a} \mid C \in 2^{B}}| = |2^{B}| + |2^{B}| = 2 |2^{B}| 2A=2B{C{a}C2B}=2B+{C{a}C2B}=2B+2B=2∣2B

    • 显然, B = n B = n B=n ∣ 2 B ∣ = 2 ∣ B ∣ |2^{B}| = 2^{|B|} 2B=2B

    • ∣ 2 A ∣ = 2 ∣ 2 B ∣ = 2 × 2 ∣ B ∣ = 2 ∣ B ∣ + 1 = 2 ∣ A ∣ |2^{A}| = 2 |2^{B}| = 2 \times 2^{|B|} = 2^{|B| + 1} = 2^{|A|} 2A=2∣2B=2×2B=2B+1=2A,结论对 ∣ A ∣ = n + 1 |A| = n + 1 A=n+1成立

    • 由归纳法原理,结论对任意有穷集合成立

闭包
  • P P P是关于关系的性质的集合,关系 R R R P P P闭包是包含 R R R并且具有 P P P中所有性质的最小关系
正闭包
  • R R R S S S上的二元关系, R R R的正闭包 R + R^{+} R+定义为

    • 1 1 1 R ⊆ R + R \subseteq R^{+} RR+

    • 2 2 2)如果 ( a , b ) (a , b) (a,b) ( b , c ) ∈ R + (b , c) \in R^{+} (b,c)R+,则 ( a , c ) ∈ R + (a , c) \in R^{+} (a,c)R+

    • 3 3 3)除( 1 1 1)和( 2 2 2)外, R + R^{+} R+不再含有其他任何元素

  • R + R^{+} R+具有传递性,又称为传递闭包

  • 对任意二元关系 R R R,有 R + = R ∪ R 2 ∪ R 3 ∪ ⋯ R^{+} = R \cup R^{2} \cup R^{3} \cup \cdots R+=RR2R3,当 S S S为有穷集时,有 R + = R ∪ R 2 ∪ R 3 ∪ ⋯ ∪ R ∣ S ∣ R^{+} = R \cup R^{2} \cup R^{3} \cup \cdots \cup R^{|S|} R+=RR2R3RS

克林闭包
  • R R R S S S上的二元关系, R R R的克林闭包 R ∗ R^{*} R定义为

    • 1 1 1 R 0 ⊆ R ∗ R^{0} \subseteq R^{*} R0R R ⊆ R ∗ R \subseteq R^{*} RR

    • 2 2 2)如果 ( a , b ) (a , b) (a,b) ( b , c ) ∈ R ∗ (b , c) \in R^{*} (b,c)R,则 ( a , c ) ∈ R ∗ (a , c) \in R^{*} (a,c)R

    • 3 3 3)除( 1 1 1)和( 2 2 2)外, R ∗ R^{*} R不再含有其他任何元素

  • R ∗ R^{*} R具有自反性、传递性,又称为自反传递闭包

  • 对任意二元关系 R R R,有 R ∗ = R 0 ∪ R + R^{*} = R^{0} \cup R^{+} R=R0R+

正闭包和克林闭包的性质
  • R 1 R_{1} R1 R 2 R_{2} R2 S S S上的两个二元关系,则
    • ( R 1 + ) + = R 1 + (R_{1}^{+})^{+} = R_{1}^{+} (R1+)+=R1+

    • ( R 1 ∗ ) ∗ = R 1 ∗ (R_{1}^{*})^{*} = R_{1}^{*} (R1)=R1

    • R 1 + ∪ R 2 + ⊆ ( R 1 ∪ R 2 ) + R_{1}^{+} \cup R_{2}^{+} \subseteq (R_{1} \cup R_{2})^{+} R1+R2+(R1R2)+

    • R 1 ∗ ∪ R 2 ∗ ⊆ ( R 1 ∪ R 2 ) ∗ R_{1}^{*} \cup R_{2}^{*} \subseteq (R_{1} \cup R_{2})^{*} R1R2(R1R2)


1.3|图

无向图
度数
  • G = ( V , E ) G = (V , E) G=(V,E)是一个无向图,对于 v ∈ V v \in V vV ∣ {   w ∣ ( v , w ) ∈ E   } ∣ |\set{w \mid (v , w) \in E}| {w(v,w)E}称为顶点 v v v的度数,记为 d e g ( v ) deg(v) deg(v)
有向图
  • ∀ ( v 1 , v 2 ) ∈ E \forall (v_{1} , v_{2}) \in E (v1,v2)E称为从顶点 v 1 v_{1} v1到顶点 v 2 v_{2} v2的有向边或弧, v 1 v_{1} v1称为前导, v 2 v_{2} v2称为后继

1.4|语言

形式语言的产生
  • 1959 1959 1959年,乔姆斯基通过深入研究,将本人的研究成果与克林的研究成果结合,不仅确定了文法和自动机分别从生成和识别的角度去表达语言,而且证明了文法与自动机的等价性,此时形式语言才真正诞生,并被置于数学的光芒之下
字母表的乘积
  • Σ 1 \Sigma_{1} Σ1 Σ 2 \Sigma_{2} Σ2是两个字母表, Σ 1 \Sigma_{1} Σ1 Σ 2 \Sigma_{2} Σ2的乘积: Σ 1 Σ 2 = {   a b ∣ a ∈ Σ 1 , b ∈ Σ 2   } \Sigma_{1} \Sigma_{2} = \set{ab \mid a \in \Sigma_{1} , b \in \Sigma_{2}} Σ1Σ2={abaΣ1,bΣ2}
字母表的幂
  • Σ \Sigma Σ是一个字母表, Σ \Sigma Σ n n n次幂递归地定义为

    • Σ 0 = {   ε   } \Sigma^{0} = \set{\varepsilon} Σ0={ε}

    • Σ n = Σ n − 1 Σ , n ≥ 1 \Sigma^{n} = \Sigma^{n - 1} \Sigma , n \geq 1 Σn=Σn1Σ,n1

字母表的闭包
正闭包
  • Σ \Sigma Σ是一个字母表, Σ \Sigma Σ的正闭包: Σ + = Σ ∪ Σ 2 ∪ Σ 3 ∪ ⋯ \Sigma^{+} = \Sigma \cup \Sigma^{2} \cup \Sigma^{3} \cup \cdots Σ+=ΣΣ2Σ3
克林闭包
  • Σ \Sigma Σ是一个字母表, Σ \Sigma Σ的克林闭包: Σ ∗ = Σ 0 ∪ Σ + \Sigma^{*} = \Sigma^{0} \cup \Sigma^{+} Σ=Σ0Σ+
句子
  • Σ \Sigma Σ是一个字母表, ∀ x ∈ Σ ∗ \forall x \in \Sigma^{*} xΣ x x x称为 Σ \Sigma Σ上的一个句子,句子还称为字、行、串
出现
  • Σ \Sigma Σ是一个字母表, x x x y ∈ Σ ∗ y \in \Sigma^{*} yΣ a ∈ Σ a \in \Sigma aΣ,句子 x a y xay xay中的 a a a称为 a a a在该句子中的一个出现
语言
  • Σ \Sigma Σ是一个字母表, ∀ L ⊆ Σ ∗ \forall L \subseteq \Sigma^{*} LΣ L L L称为字母表 Σ \Sigma Σ上的一个语言
  • 当含有可数无穷个句子时,称 L L L为无穷语言
  • L 1 = {   0 n ∣ n ≥ 1   } L_{1} = \set{0^{n} \mid n \geq 1} L1={0nn1} L 2 = {   1 n ∣ n ≥ 1   } L_{2} = \set{1^{n} \mid n \geq 1} L2={1nn1} L 1 L 2 = {   0 n 1 m ∣ n , m ≥ 1   } L_{1} L_{2} = \set{0^{n} 1^{m} \mid n , m \geq 1} L1L2={0n1mn,m1}

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值