第一章:绪论
1.1 1.1 1.1|集合的基础知识
集合论的发展
- 集合论是德国数学家康托于 1874 1874 1874年创立的,经历了两个阶段
- 1908 1908 1908年以前称为朴素集合论,又称为康托集合论,存在集合悖论问题
- 哲墨罗于 1908 1908 1908年提出了第一个集合论公理系统,经富兰科尔和斯库利姆改进和补充,形成了 Z F ZF ZF公理系统,同年,罗素给出了关于集合型的层次理论——类型论
集合的基数
- 如果集合 A A A与集合 B B B之间有一个一一对应,则称它们具有相同的基数
- 通常用 ∣ A ∣ | A | ∣A∣表示集合 A A A的基数
- 集合的基数又称为集合的势
无穷集
- 无穷集可以分成可数集和不可数集
- 设 S S S是一个无穷集,如果集合 S S S与自然数集 N N N具有相同的基数,则称 S S S是可数集
- 否则,称 S S S是不可数集
包集
- 如果集合 A A A是集合 B B B的子集,则称集合 B B B是集合 A A A的包集
等价符号
- ⇔ \Leftrightarrow ⇔可用 i f f iff iff表示
集族
- 当一个集合的元素都是集合时,这样的集合称为集族
对称差
-
设 A A A, B B B是两个集合, A A A与 B B B的对称差由属于 A A A但不属于 B B B,以及属于 B B B但不属于 A A A的所有元素组成,记作 A ⊕ B A \oplus B A⊕B
-
A ⊕ B = ( A ∪ B ) − ( A ∩ B ) = ( A − B ) ∪ ( B − A ) A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A) A⊕B=(A∪B)−(A∩B)=(A−B)∪(B−A)
幂集
- 对任意集合 A A A, B B B, 2 A ∩ B = 2 A ∩ 2 B 2^{A \cap B} = 2^{A} \cap 2^{B} 2A∩B=2A∩2B
1.2 1.2 1.2|关系
二元关系
- 设 A A A, B B B是两个集合,任意的 R ⊆ A × B R \subseteq A \times B R⊆A×B, R R R是 A A A到 B B B的二元关系
- 设 R R R是 A A A上的二元关系
- 如果对任意 a ∈ A a \in A a∈A,有 ( a , a ) ∉ R (a , a) \notin R (a,a)∈/R,则称 R R R是反自反的
- 如果对任意 a a a, b ∈ A b \in A b∈A,当 ( b , a ) ∈ R (b , a) \in R (b,a)∈R和 ( a , b ) ∈ R (a , b) \in R (a,b)∈R同时成立时,必有 a = b a = b a=b,则称 R R R是反对称的
- 自反、对称、传递称为关系的三歧性
- 设 R R R是 A A A上的二元关系
等价类
-
设 R R R是集合 S S S上的等价关系,则满足如下要求的 S S S的划分 S 1 S_{1} S1, S 2 S_{2} S2, ⋯ \cdots ⋯, S n S_{n} Sn, ⋯ \cdots ⋯称为 S S S关于 R R R的等价划分, S i S_{i} Si称为等价类
-
S = S 1 ∪ S 2 ∪ ⋯ ∪ S n ∪ ⋯ S = S_{1} \cup S_{2} \cup \cdots \cup S_{n} \cup \cdots S=S1∪S2∪⋯∪Sn∪⋯
-
如果 i ≠ j i \neq j i=j,则 S i ∩ S j = ∅ S_{i} \cap S_{j} = \emptyset Si∩Sj=∅
-
对任意 i i i, S i S_{i} Si中的任意两个元素 a a a, b b b, a R b a R b aRb恒成立
-
对任意 i i i, j j j, i ≠ j i \neq j i=j, S i S_{i} Si中的任意元素 a a
-