《形式语言与自动机理论(第4版)》笔记(持续更新中)

第一章:绪论


1.1 1.1 1.1|集合的基础知识

集合论的发展
  • 集合论是德国数学家康托于 1874 1874 1874年创立的,经历了两个阶段
    • 1908 1908 1908年以前称为朴素集合论,又称为康托集合论,存在集合悖论问题
    • 哲墨罗于 1908 1908 1908年提出了第一个集合论公理系统,经富兰科尔和斯库利姆改进和补充,形成了 Z F ZF ZF公理系统,同年,罗素给出了关于集合型的层次理论——类型论
集合的基数
  • 如果集合 A A A与集合 B B B之间有一个一一对应,则称它们具有相同的基数
  • 通常用 ∣ A ∣ | A | A表示集合 A A A的基数
  • 集合的基数又称为集合的势
无穷集
  • 无穷集可以分成可数集和不可数集
    • S S S是一个无穷集,如果集合 S S S与自然数集 N N N具有相同的基数,则称 S S S是可数集
    • 否则,称 S S S是不可数集
包集
  • 如果集合 A A A是集合 B B B的子集,则称集合 B B B是集合 A A A的包集
等价符号
  • ⇔ \Leftrightarrow 可用 i f f iff iff表示
集族
  • 当一个集合的元素都是集合时,这样的集合称为集族
对称差
  • A A A B B B是两个集合, A A A B B B的对称差由属于 A A A但不属于 B B B,以及属于 B B B但不属于 A A A的所有元素组成,记作 A ⊕ B A \oplus B AB

  • A ⊕ B = ( A ∪ B ) − ( A ∩ B ) = ( A − B ) ∪ ( B − A ) A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A) AB=(AB)(AB)=(AB)(BA)

幂集
  • 对任意集合 A A A B B B 2 A ∩ B = 2 A ∩ 2 B 2^{A \cap B} = 2^{A} \cap 2^{B} 2AB=2A2B

1.2 1.2 1.2|关系

二元关系
  • A A A B B B是两个集合,任意的 R ⊆ A × B R \subseteq A \times B RA×B R R R A A A B B B的二元关系
    • R R R A A A上的二元关系
      • 如果对任意 a ∈ A a \in A aA,有 ( a , a ) ∉ R (a , a) \notin R (a,a)/R,则称 R R R是反自反的
      • 如果对任意 a a a b ∈ A b \in A bA,当 ( b , a ) ∈ R (b , a) \in R (b,a)R ( a , b ) ∈ R (a , b) \in R (a,b)R同时成立时,必有 a = b a = b a=b,则称 R R R是反对称的
    • 自反、对称、传递称为关系的三歧性
等价类
  • R R R是集合 S S S上的等价关系,则满足如下要求的 S S S的划分 S 1 S_{1} S1 S 2 S_{2} S2 ⋯ \cdots S n S_{n} Sn ⋯ \cdots 称为 S S S关于 R R R的等价划分, S i S_{i} Si称为等价类

    • S = S 1 ∪ S 2 ∪ ⋯ ∪ S n ∪ ⋯ S = S_{1} \cup S_{2} \cup \cdots \cup S_{n} \cup \cdots S=S1S2Sn

    • 如果 i ≠ j i \neq j i=j,则 S i ∩ S j = ∅ S_{i} \cap S_{j} = \emptyset SiSj=

    • 对任意 i i i S i S_{i} Si中的任意两个元素 a a a b b b a R b a R b aRb恒成立

    • 对任意 i i i j j j i ≠ j i \neq j i=j S i S_{i} Si中的任意元素 a a

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值