【堆】大根堆的建立及其元素的插入和删除

关于建堆和调整为堆的思想,可以看这篇文章

void createHeap(vector<int> &nums);
void heapAdjust(vector<int> &nums, int rootIdx, int m);
void insertHeap(vector<int> &nums, int val);
int deleteHeap(vector<int> &nums);

// 根结点从 1 开始,方便右移寻找父节点!!!
int main() {
    vector<int> nums = {0, 49, 38, 65, 97, 76, 13, 27, 49};
    // 建堆
    createHeap(nums);
    
    cout << "top = " << nums[1] << endl; // top = 97
    
    int valInsert = 99;
    cout << "valInsert = " << valInsert << endl; // valInsert = 99
    insertHeap(nums,valInsert);
    cout << "top = " << nums[1] << endl; // top = 99
    
    int val = deleteHeap(nums);
    cout << "val of delete = " << val << endl; // val of delete = 99
    cout << "top = " << nums[1] << endl; // top = 97
    
    val = deleteHeap(nums);
    cout << "val of delete = " << val << endl; // val of delete = 97
    cout << "top = " << nums[1] << endl; // top = 76
}

void createHeap(vector<int> &nums){
    int len = nums.size();
    // 建初堆
    for (int i = len / 2; i >= 1; i--){
        heapAdjust(nums, i, len - 1);
    }
}

void heapAdjust(vector<int> &nums, int rootIdx, int m){
    // 函数功能:调整为大根堆
    // 将以 rootIdx 为根结点,结束结点的下标是 m 的子树调整为大根堆
    int pivot = nums[rootIdx];
    int j = 2 * rootIdx; // 左孩子结点
    for (j; j <= m; j *= 2){
        if (j < m && nums[j] < nums[j + 1]){ // 找出孩子结点中的最大值
            j++;
        }
        if (pivot >= nums[j]){ // 本身就是大根堆
            break;
        }
        nums[rootIdx] = nums[j];
        rootIdx = j;
    }
    nums[rootIdx] = pivot;
}

void insertHeap(vector<int> &nums, int val){
    // 函数功能:将元素val插入堆
    
    // 主要思想:将待插入的值放到末尾,然后从 此元素 开始 自底向上调整为大根堆
    // 这里不做内存是否溢出的判断
    nums.push_back(val);
    // 自底向上调整
    int j = nums.size() - 1;
    for (j; nums[j >> 1] < val; j >>= 1){
        // 如果插入的元素大于其父节点,将父节点移到该元素的位置,继续向上比较
        nums[j] = nums[j >> 1];
        if ((j >> 1) == 0){
            break;
        }
    }
    nums[j] = val;
}

int deleteHeap(vector<int> &nums){
    // 函数功能:删除堆顶元素,并返回删除的值
    
    // 主要思想:用堆的最后一个叶子结点去填补根结点,然后自顶向下调整为堆
    int len = nums.size();
    int val = nums[1]; // 需要返回的堆顶元素
    nums[1] = nums[len - 1]; // 将最后一个元素放到根结点(堆顶)
    nums.pop_back(); // 删除最后一个元素
    len--; // 长度减 1
    heapAdjust(nums, 1, len - 1); // 将以 根结点 为根的树调整为堆
    return val;
}
### C++ 中的大根堆小根 #### 大根堆(Max Heap) 大根堆是一种特殊的完全二叉树,在这种数据结构中,父节点的键值总是大于等于子节点的键值。这使得元素始终是整个集合中的最大者。 在C++中创建并操作大根堆可以通过`<algorithm>`库提供的函数来完成: ```cpp #include <vector> #include <iostream> #include <algorithm> using namespace std; int main() { vector<int> arr = {20, 43, 21, 1, 6, 30}; // 构建大根堆,默认情况下std::make_heap构建的是大根堆 make_heap(arr.begin(), arr.end()); // 输出当前的最大值即元素 cout << "The maximum element is: " << arr.front() << endl; } ``` 这段代码展示了如何利用`make_heap()`方法快速建立一个大根堆,并通过访问向量的第一个位置(`arr.front()`)获取最大的元素[^2]。 对于插入元素到现有大根堆的操作,则可借助于`push_back()`配合`push_heap()`: ```cpp // 插入新的元素大根堆 arr.push_back(99); // 添加新元素到最后面 push_heap(arr.begin(), arr.end()); // 调整使其保持为有效的大根堆形态 cout << "After insertion, the new max is now:" << arr.front() << endl; ``` 当需要移除顶部的最大元素时,应该先调用`pop_heap()`再执行`pop_back()`: ```cpp // 移除元素 pop_heap(arr.begin(), arr.end()); // 将最大元素移到最后一位 arr.pop_back(); // 删除该最大元素 cout << "After removal, current max becomes:" << arr.front() << endl; ``` #### 小根(Min Heap) 为了实现一个小根,可以自定义比较器作为第三个参数传递给上述提到的标准模板库(STL)算法。具体来说就是改变默认行为让较小的数成为优先级更高的对象。 下面的例子说明了怎样设置一个小根以及相应的增删改查功能: ```cpp struct MinHeapCompare { bool operator()(const int& lhs, const int& rhs) const { return lhs > rhs; // 反转条件以形成最小 } }; void minHeapExample() { vector<int> minArr = {20, 43, 21, 1, 6, 30}; // 使用自定义比较器构造小根 make_heap(minArr.begin(), minArr.end(), MinHeapCompare()); // 获取最小值 cout << "Minimum value in heap: " << minArr.front() << "\n"; // 向小根添加元素 minArr.push_back(-5); push_heap(minArr.begin(), minArr.end(), MinHeapCompare()); cout << "New minimum after adding -5 : " << minArr.front() << "\n"; // 移除最小值 pop_heap(minArr.begin(), minArr.end(), MinHeapCompare()); minArr.pop_back(); cout << "Current minimum post-removal :" << minArr.front() << "\n"; } ``` 此部分解释了如何通过重载运算符的方式调整STL容器的行为模式从而达到构建不同类型的的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值