科研调参:batch_size怎么设置?

本文揭示了深度学习中批大小(batch_size)设置的最新观点,建议保持在2-32之间,并解释了大batch的危害和mini-batch的优点。LeCun的见解强调了小batchsize的效率和测试误差优势。根据实验数据,推荐在算力充足时选择32,不足时进行效率与泛化性的权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

batch_size怎么设置?

是不是batch_size越大越好?

首先反对上面的尽可能调大batch size的说法,在现在较前沿的视角来看,这种观点无疑是有些滞后的。

关于这个问题,我们来看下深度学习三巨头之一的LeCun杨乐春同志怎么说(想看结论直接翻到最后):

Training with large minibatches is bad for your health. More importantly, it’s bad for your test error. Friends don‘t let friends use minibatches larger than 32. Let’s face it: the only people have switched to minibatch sizes larger than one since 2012 is because GPUs are inefficient for batch sizes smaller than 32. That’s a terrible reason. It just means our hardware sucks.
翻译过来就是:

使用大的batch size有害模型健康。更重要的是,它对测试集的error不利。一个真正的朋友不会让你使用大于32的batch size。直说了吧:2012年来人们开始转而使用更大batch size的原因只是我们的GPU不够强大,处理小于32的batch size时效率太低。这是个糟糕的理由,只说明了我们的硬件还很辣鸡。
那是什么使得大牛LeCun同志对大于32的batch size如此深恶痛绝而发此论呢?

怎么设置batch_size

细究出处

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值