首先,问题是这样的,执行一个HiveSQL的过程中在Map阶段发生了GC回收超时,使用的引擎为MapReduce,sql语句如下:
insert into ads_ais_voyages02 partition (dt)
select *
from ads_ais_voyages_tmp;
默认情况下,map和reduce阶段的内存都设置为2G(一般情况下都是够用的),运行一段时间后报错

看报错信息,gc回收超时,那先试着把内存加到4G
set mapreduce.reduce.memory.mb=4096;
set mapreduce.reduce.java.opts=-Xmx2048m;
set mapred.reduce.slowstart.completed.maps = 0.95;
set mapreduce.map.memory.mb=4096;
set mapreduce.map.java.opts=-Xmx2048m;
执行sql,发现还是报同样的错误

那就再将内存加到6G
set mapreduce.reduce.memory.mb=6144;
set mapreduce.reduce.java.opts=-Xmx3072m;
set mapred.reduce.slowstart.completed.maps = 0.95;
set mapreduce.map.memory.mb=6144;
set mapreduce.map.java.opts=-Xmx3072m;
一执行,发现还是报错,这不应该呀

真是令人头疼,既然加内存不管用,那就试着将map数量增多,每个map处理的数据量少了,应该就能解决了
set mapred.max.split.size=8192000;
set mapred.min.split.size= 4096000;
set mapred.min.split.size.per.node=4096000;
set mapred.min.split.size.per.rack=4096000;
一执行,结果还是报错,这有点不科学

既然加内存不管用,那我们来查看数据源的大小,再来想办法

20个parquet文件,最大的不超过120MB,讲道理不应该出现堆空间不足。但是这个parquet文件它本身进行了压缩再加上预聚合,有可能需要非常大的内存处理。既然这样,那就关掉Hive默认开启的Combine,让一个map处理一个parquet文件,再给他6G的内存,这样应该是万无一失了。

果然sql执行成功,看来就是因为parquet文件太大,导致需要大量内存,而默认combine的开启无疑会雪上加霜,几个parquet文件加起来需要超级大的内存
 
                   
                   
                   
                   文章讲述了在使用HiveSQL通过MapReduce执行查询时遇到的GC回收超时问题,尝试增加内存、调整map数量和关闭Combine功能后,发现Parquet文件的压缩和预聚合导致内存需求过大,最终解决策略是单个map处理大文件并分配足够的内存。
文章讲述了在使用HiveSQL通过MapReduce执行查询时遇到的GC回收超时问题,尝试增加内存、调整map数量和关闭Combine功能后,发现Parquet文件的压缩和预聚合导致内存需求过大,最终解决策略是单个map处理大文件并分配足够的内存。
           
                     
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   4488
					4488
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            