Strassen矩阵乘法 + 快速计算乘方的算法 + 矩阵的次幂

 

Strassen矩阵乘法 + 快速计算乘方的算法 + 矩阵的次幂

标签: 算法cn2工作
  20047人阅读  评论(0)  收藏  举报
  分类:

目录(?)[+]

1.Strassen矩阵乘法

矩阵乘法是线性代数中最常见的运算之一,它在数值计算中有广泛的应用。若A和B是2个n×n的矩阵,则它们的乘积C=AB同样是一个n×n的矩阵。A和B的乘积矩阵C中的元素C[i,j]定义为: 

若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素C[i,j],需要做n个乘法和n-1次加法。因此,求出矩阵C的n2个元素所需的计算时间为0(n3)。

60年代末,Strassen采用了类似于在大整数乘法中用过的分治技术,将计算2个n阶矩阵乘积所需的计算时间改进到O(nlog7)=O(n2.18)。

首先,我们还是需要假设n是2的幂。将矩阵A,B和C中每一矩阵都分块成为4个大小相等的子矩阵,每个子矩阵都是n/2×n/2的方阵。由此可将方程C=AB重写为:

 (1)

由此可得: 

C11=A11B11+A12B21                           (2)

C12=A11B12+A12B22                           (3)

C21=A21B11+A22B21                           (4)

C22=A21B12+A22B22                           (5)

如果n=2,则2个2阶方阵的乘积可以直接用(2)-(3)式计算出来,共需8次乘法和4次加法。当子矩阵的阶大于2时,为求2个子矩阵的积,可以继续将子矩阵分块,直到子矩阵的阶降为2。这样,就产生了一个分治降阶的递归算法。依此算法,计算2个n阶方阵的乘积转化为计算8个n/2阶方阵的乘积和4个n/2阶方阵的加法。2个n/2×n/2矩阵的加法显然可以在c*n2/4时间内完成,这里c是一个常数。因此,上述分治法的计算时间耗费T(n)应该满足:

这个递归方程的解仍然是T(n)=O(n3)。因此,该方法并不比用原始定义直接计算更有效。究其原因,乃是由于式(2)-(5)并没有减少矩阵的乘法次数。而矩阵乘法耗费的时间要比矩阵加减法耗费的时间多得多。要想改进矩阵乘法的计算时间复杂性,必须减少子矩阵乘法运算的次数。按照上述分治法的思想可以看出,要想减少乘法运算次数,关键在于计算2个2阶方阵的乘积时,能否用少于8次的乘法运算。Strassen提出了一种新的算法来计算2个2阶方阵的乘积。他的算法只用了7次乘法运算,但增加了加、减法的运算次数。这7次乘法是: 

M1=A11(B12-B22)

M2=(A11+A12)B22

M3=(A21+A22)B11

M4=A22(B21-B11)

M5=(A11+A22)(B11+B22)

M6=(A12-A22)(B21+B22)

M7=(A11-A21)(B11+B12)

做了这7次乘法后,再做若干次加、减法就可以得到: 

C11=M5+M4-M2+M6

C12=M1+M2

C21=M3+M4

C22=M5+M1-M3-M7

以上计算的正确性很容易验证。例如: 

C22=M5+M1-M3-M7

   =(A11+A22)(B11+B22)+A11(B12-B22)-(A21+A22)B11-(A11-A21)(B11+B12)

   =A11B11+A11B22+A22B11+A22B22+A11B12

     -A11B22-A21B11-A22B11-A11B11-A11B12+A21B11+A21B12

   =A21B12+A22B22 

由(2)式便知其正确性。

至此,我们可以得到完整的Strassen算法如下:

procedure STRASSEN(n,A,B,C);
begin
  if n=2 then MATRIX-MULTIPLY(A,B,C)
         else begin
                将矩阵A和B依(1)式分块;
                STRASSEN(n/2,A11,B12-B22,M1);
                STRASSEN(n/2,A11+A12,B22,M2);
                STRASSEN(n/2,A21+A22,B11,M3);
                STRASSEN(n/2,A22,B21-B11,M4);
                STRASSEN(n/2,A11+A22,B11+B22,M5);
                STRASSEN(n/2,A12-A22,B21+B22,M6);
                STRASSEN(n/2,A11-A21,B11+B12,M7);
                    ;
               end;
end;

其中MATRIX-MULTIPLY(A,B,C)是按通常的矩阵乘法计算C=AB的子算法。

Strassen矩阵乘积分治算法中,用了7次对于n/2阶矩阵乘积的递归调用和18次n/2阶矩阵的加减运算。由此可知,该算法的所需的计算时间T(n)满足如下的递归方程:

按照解递归方程套用公式法,其解为T(n)=O(nlog7)≈O(n2.81)。由此可见,Strassen矩阵乘法的计算时间复杂性比普通矩阵乘法有阶的改进。

有人曾列举了计算2个2阶矩阵乘法的36种不同方法。但所有的方法都要做7次乘法。除非能找到一种计算2阶方阵乘积的算法,使乘法的计算次数少于7次,按上述思路才有可能进一步改进矩阵乘积的计算时间的上界。但是Hopcroft和Kerr(197l)已经证明,计算2个2×2矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再寄希望于计算2×2矩阵的乘法次数的减少。或许应当研究3×3或5×5矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是O(n2.367)。而目前所知道的矩阵乘法的最好下界仍是它的平凡下界Ω(n2)。因此到目前为止还无法确切知道矩阵乘法的时间复杂性。关于这一研究课题还有许多工作可做。


 

 


 

 

 

 

 

2.快速幂:

[cpp]  view plain  copy
  1. unsigned int power(unsigned int n, unsigned int p)     
  2.   
  3. {     
  4.   
  5.     // 计算n的p次方    
  6.   
  7.     unsigned int tmp = 1;    
  8.   
  9.     while (p > 1)    
  10.   
  11.     {    
  12.   
  13.         // 判断p是否奇数,偶数的最低位必为0    
  14.   
  15.         if (( p & 1 )!=0)    
  16.   
  17.         {     
  18.   
  19.             tmp *= n; // 若p为奇数,则把“剩下的”乘起来,如果不明白请想想2进制的末尾1是不是应该乘在结果里面   
  20.   
  21.         }    
  22.   
  23.         n *= n;    
  24.   
  25.         p >>= 1;    
  26.   
  27.     }  
  28.   
  29.     return n * tmp; // 最后把主体和“剩下的”乘起来作为结果    
  30.   
  31. }  

图示:

 

 


 


3.矩阵次幂

 只需注意单位矩阵和零矩阵在数学系统中的对应

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值