cf1264 C. Beautiful Mirrors with queries

链接

点击跳转

题解

先假设检查点只有 1 1 1

e i e_i ei表示从 i i i这个位置一直到结束状态的期望步数

那么
e 1 = ( 1 − p 1 ) e 1 + ( p 1 e 2 + 1 ) e 2 = ( 1 − p 2 ) e 1 + p 2 e 3 + 1 e 3 = ( 1 − p 3 ) e 1 + p 3 e 4 + 1 … e n = ( 1 − p n ) e 1 + 1 e_1 = (1-p_1)e_1 + (p_1e_2 +1) \\ e_2 = (1-p_2)e_1 + p_2e_3 +1 \\ e_3 = (1-p_3)e_1 + p_3e_4 + 1 \\ \dots \\ e_n = (1-p_n)e_1 + 1 e1=(1p1)e1+(p1e2+1)e2=(1p2)e1+p2e3+1e3=(1p3)e1+p3e4+1en=(1pn)e1+1

注意我们一共有 n n n个未知数, n n n个一次线性方程,而且显然是有唯一解的

但是总不能高斯消元吧

观察所有的式子,都包含 e 1 e_1 e1,我不妨视 e 1 e_1 e1为常数,那么显然根据上面的递推式可以得出 e i = a i e 1 + b i e_i = a_ie_1 + b_i ei=aie1+bi的形式, a i , b i a_i,b_i ai,bi可以递推求出

过程跳过,直接给出结果:
e 2 = e 1 − ( p 2 ) − 1 + ( p 2 p 1 ) − 1 e 3 = e 1 − ( p 3 ) − 1 + ( p 3 p 2 ) − 1 + ( p 3 p 2 p 1 ) − 1 … e n = e 1 − ( p n ) − 1 + ( p n p n − 1 ) − 1 + ⋯ + ( ∏ p i ) − 1 e_2 = e_1 - (p_2)^{-1} + (p_2p_1)^{-1} \\ e_3 = e_1 - (p_3)^{-1} + (p_3p_2)^{-1} + (p_3p_2p_1)^{-1} \\ \dots \\ e_n = e_1 - (p_n)^{-1} + (p_np_{n-1})^{-1} + \dots + (\prod p_i)^{-1} e2=e1(p2)1+(p2p1)1e3=e1(p3)1+(p3p2)1+(p3p2p1)1en=e1(pn)1+(pnpn1)1++(pi)1

这是前 n − 1 n-1 n1个方程求出来的东西,我们还有最后一个方程 e n = ( 1 − p n ) e 1 + 1 e_n = (1-p_n)e_1 + 1 en=(1pn)e1+1没用呢,上面不是已经解出来 e n e_n en e 1 e_1 e1之间的线性关系了吗,联立一下直接可以得到
e 1 = t n + t n t n − 1 + ⋯ + ∏ t i e_1 = t_n + t_nt_{n-1} + \dots + \prod t_i e1=tn+tntn1++ti

其中 t i = p i − 1 t_i = p_i^{-1} ti=pi1

分段的事请其实很好处理,因为整个过程可以看作是先从第一个检查点走到第二个检查点,然后再从第二个检查点走到第三个检查点…依次类推,所以求每段期望的和就行了

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
#define mod 998244353ll
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
}em;
ll now, p[maxn], suf_prd[maxn], s[maxn], n, on[maxn], e[maxn];
set<ll> check;
void upd(ll pos)
{
    now -= e[pos];
    if(on[pos])
    {
        auto it=check.find(pos);
        it++;
        auto nex=*it;
        e[pos] = (s[pos]-s[nex])*em.fastpow(suf_prd[nex],mod-2,mod)%mod;
    }
    else e[pos] = 0;
    now += e[pos];
    now = ( now%mod + mod ) %mod;
}
int main()
{
    ll i, q, _100=em.inv(100,mod);
    n=read(), q=read();
    rep(i,n)p[i]=em.inv(read()*_100%mod,mod);
    suf_prd[n+1]=s[n+1]=p[n+1]=1;
    for(i=n;i;i--)suf_prd[i]=suf_prd[i+1]*p[i]%mod, s[i]=(s[i+1]+suf_prd[i])%mod;
    check.em(1); check.em(n+1);
    on[1]=1;
    upd(1);
    while(q--)
    {
        ll u=read();
        on[u]^=1;
        if(on[u])
        {
            check.em(u);
            auto it=check.find(u);
            upd(u);
            it--;
            upd(*it);
        }
        else
        {
            auto it=check.find(u);
            upd(u);
            it--;
            check.erase(u);
            upd(*it);
        }
        printf("%lld\n",now);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值