反证法和数学归纳法
反证法(a proof by contradiction)
为了证明命题p为真,先假设它为假(非P是真)。然后用这个假设P为假来推导出一个错误。换句话,你证明了一个错误是真的。这叫做推导出矛盾。
(So to prove a proposition p is true,you will assume P it’s false(not P is true).and then you use that hypothesis,namely the p to derive a falsehood.this is called deriving a contradiction.)
Ex: Thm: 2 \sqrt2 2 is irrational
pf (by contradiction)
Assume for the purpose of contradiction that 2 \sqrt2 2 is rational
⇒ 2 = a / b \Rightarrow \sqrt2=a/b ⇒2=a/b(既约分数a fraction in lowest terms)
⇒ 2 = a 2 / b 2 \Rightarrow 2=a^2/b^2 ⇒2=a2/b2
⇒ 2 b 2 = a 2 \Rightarrow 2b^2=a^2 ⇒2b2=a2
⇒ \Rightarrow ⇒ a is even (2 | a)
⇒ 4 ∣ a 2 \Rightarrow 4 | a^2 ⇒4∣a2
⇒ 4 ∣ 2 b 2 \Rightarrow 4 | 2b^2 ⇒4∣2b2
⇒ 2 ∣ b 2 \Rightarrow 2 | b^2 ⇒2∣b