人工智能教程 - 数学基础课程1.5 - 离散数学-2 反证法和数学归纳法

本文介绍了反证法和数学归纳法在证明数学命题中的应用。通过反证法证明2是无理数,展示了如何从假设命题为假推导出矛盾。接着解释了数学归纳法的基本原理,通过例子证明了所有大于等于0的整数之和的公式,并详细展示了归纳步骤的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反证法和数学归纳法

反证法(a proof by contradiction)
为了证明命题p为真,先假设它为假(非P是真)。然后用这个假设P为假来推导出一个错误。换句话,你证明了一个错误是真的。这叫做推导出矛盾。

(So to prove a proposition p is true,you will assume P it’s false(not P is true).and then you use that hypothesis,namely the p to derive a falsehood.this is called deriving a contradiction.)


Ex: Thm: 2 \sqrt2 2 is irrational

pf (by contradiction)

Assume for the purpose of contradiction that 2 \sqrt2 2 is rational
⇒ 2 = a / b \Rightarrow \sqrt2=a/b 2 =a/b(既约分数a fraction in lowest terms)

⇒ 2 = a 2 / b 2 \Rightarrow 2=a^2/b^2 2=a2/b2

⇒ 2 b 2 = a 2 \Rightarrow 2b^2=a^2 2b2=a2

⇒ \Rightarrow a is even (2 | a)

⇒ 4 ∣ a 2 \Rightarrow 4 | a^2 4a2

⇒ 4 ∣ 2 b 2 \Rightarrow 4 | 2b^2 42b2

⇒ 2 ∣ b 2 \Rightarrow 2 | b^2 2b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值