实用算法实现-第 25 篇 最大公约数

最大公约数有经典算法Euclid算法可以求出。而对于正整数a、b,若将它们的最大公约数表示为gcd(a, b),最小公倍数表示为lcm(a, b),那么有公式:a • b = gcd(a, b) • lcm(a, b)。由这个公式,可以求得两个数的最小公倍数。

25.1    Euclid算法

int Euclid(int a, intb)
{
/*
欧几里德算法
GCD递归定理:
对任意非负证书a和任意正整数b
gcd(a, b) = gcd(b, a mod b)
*/
     if(b == 0){
         returna;
     }else{
         returnEuclid(b, a % b);
     }
}

25.2    Euclid算法的扩广形式

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
struct Euclid{
     int d;
     int x;
     int y;
};
EuclidextendedEuclid(int a, intb)
{
/*
欧几里德算法
GCD递归定理:
对任意非负数a和任意正整数b
gcd(a, b) = gcd(b, a mod b)
d = gcd(a, b) = a * x + b * y
返回的x, y有可能是负数
*/
     Euclid temp;
     Euclid temp1;
     if(b == 0){
         temp.d = a;
         temp.x = 1;
         temp.y = 0;
         returntemp;
     }
     temp = extendedEuclid(b, a % b);
     temp1.d = temp.d;
     temp1.x = temp.y;
     temp1.y = temp.x -((a / b) * temp.y);
     returntemp1;
}
int main()
{
     int a, b;
     Euclid temp;
     while(cin>> a >> b)
     {
         temp = extendedEuclid(a, b);
         cout << temp.d << ":"<< temp.x << ":"<< temp.y <<endl;
     }
     return 1;
}
本文章欢迎转载,请保留原始博客链接http://blog.csdn.net/fsdev/article

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值