最大公约数有经典算法Euclid算法可以求出。而对于正整数a、b,若将它们的最大公约数表示为gcd(a, b),最小公倍数表示为lcm(a, b),那么有公式:a • b = gcd(a, b) • lcm(a, b)。由这个公式,可以求得两个数的最小公倍数。
25.1 Euclid算法
int Euclid(int a, intb)
{
/*
欧几里德算法
GCD递归定理:
对任意非负证书a和任意正整数b
gcd(a, b) = gcd(b, a mod b)
*/
if(b == 0){
returna;
}else{
returnEuclid(b, a % b);
}
}
25.2 Euclid算法的扩广形式
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
struct Euclid{
int d;
int x;
int y;
};
EuclidextendedEuclid(int a, intb)
{
/*
欧几里德算法
GCD递归定理:
对任意非负数a和任意正整数b
gcd(a, b) = gcd(b, a mod b)
d = gcd(a, b) = a * x + b * y
返回的x, y有可能是负数
*/
Euclid temp;
Euclid temp1;
if(b == 0){
temp.d = a;
temp.x = 1;
temp.y = 0;
returntemp;
}
temp = extendedEuclid(b, a % b);
temp1.d = temp.d;
temp1.x = temp.y;
temp1.y = temp.x -((a / b) * temp.y);
returntemp1;
}
int main()
{
int a, b;
Euclid temp;
while(cin>> a >> b)
{
temp = extendedEuclid(a, b);
cout << temp.d << ":"<< temp.x << ":"<< temp.y <<endl;
}
return 1;
}
本文章欢迎转载,请保留原始博客链接http://blog.csdn.net/fsdev/article