介电常数、等效介电常数

电容的大小和导体周围介质的特性有关。如果当两个导体周围填充的介质为空气时,
电容为C,把空气换成另外一种介质后两导体间电容变为C,那么这种新的介质的介电

常数为

通常所说的介质的介电常数实际上是一种相对介电常数,习惯上使用下标r表示,这一
参数没有单位,表征的是与空气相比这种介质会使电容量改变多少。所有的介质都使用相
对介电常数来表示这种特性,因此常常省略“相对”一词,简称为“介电常数”。如果一种
介质的介电常数为4,说明相对于空气来说,换上这种介质后会使导体间电容增加到原来的
4倍。介电常数是一个非常有用的概念,和信号完整性中很多重要的参数都有关,比如传输
线的特性阻抗、延时等。
介电常数是物质本身的固有特性,和物质的大小形状无关,但和介质的组成成分有关。
加工PCB常用的板材一般都是玻璃纤维编织结构和树脂混合压制而成的,玻璃纤维和树脂
的介电常数不同,因此,板材所表现出来的介电常数实际上是这两种介质的某种平均后的
结果,板材介电常数的大小与树脂和玻璃纤维含量的比例有关。PCB加工过程中使用的板
材分PP和Core两种,Core是已经固化的两面为铜箔的板材,加工PCB的时候Core中树
脂和玻璃纤维的相对含量可以认为不变,因此介电常数相对稳定。PP(也称半固化片)在
加工PCB过程中树脂会由于高温而融化,在压合过程中可能树脂的含量会有变化,因此,
PCB加工完成后PP的介电常数与加工过程有关。
导体周围填充的是均匀介质的时候,导体感受到的介电常数就是介质的介电常数,如
果周围填充的介质是非均匀介质的时候,那么导体感受到的介电常数和两种介质的特性都
有关。此时可以使用等效介电常数e, 。一种典型的情况是PCB上的表层走线,走线的
一边是空气,另一边是PCB板材,电力线一部分分布在空气中,另一部分分布在板材中,如
图3-10所示。因此,表层走线“感受”到的介电常数必然是空气和介质的某种平均。空气
的介电常数为1,小于板材的介电常数,表层走线“感受”到的等效介电常数就小于板材的
介电常数。假设走线为50Ω阻抗控制的表层走线,线宽为6mil,介质的介电常数为4.4,
则走线“感受”到的等效介电常数为3.44。很难用近似公式准确地估计等效介电常数的数
值,要想了解等效介电常数的大小,最好的办法就是使用场求解器,很多场求解器都可以准
确地计算出等效介电常数。
内容概要:本文档详细介绍了如何使用MATLAB实现粒子群优化算法(PSO)优化极限学习机(ELM)进行时间序列预测的项目实例。项目背景指出,PSO通过模拟鸟群觅食行为进行全局优化,ELM则以其快速训练和强泛化能力著称,但对初始参数敏感。结合两者,PSO-ELM模型能显著提升时间序列预测的准确性。项目目标包括提高预测精度、降低训练时间、处理复杂非线性问题、增强模型稳定性和鲁棒性,并推动智能化预测技术的发展。面对数据质量问题、参数优化困难、计算资源消耗、模型过拟合及非线性特征等挑战,项目采取了数据预处理、PSO优化、并行计算、交叉验证等解决方案。项目特点在于高效的优化策略、快速的训练过程、强大的非线性拟合能力和广泛的适用性。; 适合人群:对时间序列预测感兴趣的研究人员、数据科学家以及有一定编程基础并希望深入了解机器学习优化算法的工程师。; 使用场景及目标:①金融市场预测,如股票走势预测;②气象预报,提高天气预测的准确性;③交通流量预测,优化交通管理;④能源需求预测,确保能源供应稳定;⑤医疗健康预测,辅助公共卫生决策。; 其他说明:文档提供了详细的模型架构描述和MATLAB代码示例,涵盖数据预处理、PSO优化、ELM训练及模型评估等关键步骤,帮助读者全面理解和实践PSO-ELM模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值