软件安装及配置
aift
不破楼兰终不还!
展开
-
Docker基础知识入门
文章目录Docker简介学习目标三大概念Docker安装资料参考Docker简介Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。(可移植,轻量级,动态管理,响应式部署)学习目标了解什么是dockerdocker镜像是怎么构建的如何运行一个docker容器docker之间的网络通信是怎么样的docker中的数据如何做持久化存储如何通过docker compose管理自己的项目如何将自己的个人项目原创 2021-04-13 00:13:50 · 443 阅读 · 0 评论 -
conda环境的复制(生成.yaml文件)和pip环境的复制(生成requirements.txt)
由于最近conda的清华源被“墙”,conda install在我大天朝“暂时”基本处于用不了的状态,推荐用下面的“pip环境的转移和复制”方法。pip环境的转移和复制python项目中一般都包含一个 requirements.txt 文件,用于记录所有依赖包及其精确的版本号。以便新环境的部署。下面为在linux环境下“pip自动生成和安装requirements.txt”的步骤。激活相...原创 2019-06-15 22:18:58 · 56523 阅读 · 11 评论 -
pip自动生成和安装requirements.txt
python项目中一般都包含一个 requirements.txt 文件,用于记录所有依赖包及其精确的版本号。以便新环境的部署。下面为在linux环境下“pip自动生成和安装requirements.txt”的步骤。激活相应虚拟环境conda env list # 查看所有的conda虚拟环境source activate env_name生成requirements.txt...原创 2019-06-15 22:01:15 · 680 阅读 · 0 评论 -
PyCharm配置远程python解释器
文章目录使用场景及简介配置过程本地及服务器环境配置Deployment配置远程python解释器总结References使用场景及简介虽然对于个人日常使用来说,Windows更加友好,但深度学习工作常需要在服务端(linux)环境中跑模型代码。对于新手来说,在学习ML/DL时,常常需要将本地写的代码传到GPU服务器中,然后在服务器上运行。这种方式需要先在本地写好代码,然后通过WinSCP这样的...原创 2019-06-13 20:47:50 · 23383 阅读 · 23 评论 -
Python,Anaconda环境安装配置
文章目录Python安装pip包管理Anaconda安装conda包管理和环境管理Python3与Python2共存(Anconda3与Anaconda2共存)Jupyter notebook配置快捷键插件扩展Jupyter LabJupyter notebook功能扩展Nbextensions (超强!)添加对R语言的支持添加对Julia语言的支持添加对C的支持其他Google免费的Noteb...原创 2019-05-31 11:06:48 · 4740 阅读 · 0 评论 -
CRNN——pytorch + wrap_ctc编译,实现pytorch版CRNN
简介CTC可以生成一个损失函数,用于在序列数据上进行监督式学习,不需要对齐输入数据及标签,经常连接在一个RNN网络的末端,训练端到端的语音或文本识别系统。CTC论文本文主要是讲解用wrap_ctc实现pytorch版本的CRNN,用其来进行OCR端到端文本识别。(注:wrap_ctc是百度开源的一个模块,需要自己编译使用。在pytorch 1.0中,自带了CTC loss,用pytorch 1...原创 2019-05-19 00:07:49 · 4751 阅读 · 2 评论