计算机视觉(CV)
aift
不破楼兰终不还!
展开
-
Kaggle: SIIM-ACR Pneumothorax Segmentation 比赛记录(银牌)Top 5%
文章目录记事SIIM是19年暑假的一个比赛了,当时拿了银牌,这篇博客是赛后自己做的总结和笔记。现在分享出来。记事随着 Kaggle: SIIM-ACR Pneumothorax Segmentation 接近尾声,我感觉有必要写一篇 blog 来记录一下这两个月的比赛经历,顺便总结一下经验。刚开始的时候想着这不过是一场普通CV类的比赛而已,肝一肝就能上金牌。但现实狠狠地打了我的脸。最初三天...原创 2020-03-20 21:15:23 · 1139 阅读 · 3 评论 -
目标检测中的mAP及代码实现
文章目录mAP定义及相关概念举例计算mAPmAP定义及相关概念下面只简要介绍必需的基础知识,来自文章及翻译,推荐阅读。mAP: mean Average Precision, 即各类别AP的平均值;AP: PR曲线下面积,后文会详细讲解;PR曲线: Precision-Recall曲线;Precision: TP / (TP + FP);Recall: TP / (TP + FN)...原创 2019-08-22 10:31:52 · 3571 阅读 · 0 评论 -
FCN学习总结
文章目录简介网络结构逐像素预测反卷积跳级结构训练结论References简介FCN——Fully Convolutional Networks for Semantic Segmentation是CVPR 2015的论文,其是深度学习应用于图像分割的代表作,作者Oral发表于CVPR 2015。该算法在图像分割问题中应用了当下CNN的几种最新思潮。全卷积网络(FCN)是从抽象的特征中恢复出每个...原创 2019-08-07 21:43:54 · 1337 阅读 · 0 评论 -
PVANet学习总结
文章目录简介网络结构C.ReLUInception structureHyperNet实验过程References简介PVANet: Deep but Lightweight Neural Networks for Real-time Object Detection——是RCNN系列目标方向,其基于Faster-RCNN进行了改进。这是一种轻量级的网络。这篇文章的出发点是改进Faster ...原创 2019-08-09 22:08:43 · 732 阅读 · 0 评论 -
U-Net学习总结(附DeepLab v3)
文章目录简介U-NetReferences简介本论文主要亮点:(1)改进了FCN,把扩展路径完善了很多,多通道卷积与类似FPN(特征金字塔网络)的结构相结合。(2)利用少量数据集进行训练测试,为医学图像分割做出很大贡献。这是比较早的论文了,这篇论文比较简单,但是却非常的经典。而且U-Net和之前的FCN很像。总之,U-Net在医学图像分割领域简直是baba一般的存在。U-NetU-N...原创 2019-08-09 20:22:16 · 2386 阅读 · 0 评论 -
SSD学习总结
文章目录简介创新点采用多尺度特征图用于检测采用卷积进行检测设置先验框网络结构训练过程先验框匹配策略损失函数各种Trick分析References简介这篇文章提出了一个新的目标检测模型SSD,这是一种 single stage 的检测模型,相比于R-CNN系列模型上要简单许多。其精度可以与Faster R-CNN相匹敌,而速度达到了惊人的59FPS,速度上完爆 Fster R-CNN。基于”P...原创 2019-08-07 11:09:59 · 869 阅读 · 0 评论 -
YOLO v3学习总结
别的不说,YOLOv3的论文确实是有意思呀,读论文感觉着实又被大佬虐了一把,强烈推荐阅读。YOLOv3没有太多的创新,主要是借鉴一些好的方案融合到YOLO里面。不过效果还是不错的,在保持速度优势的前提下,提升了预测精度,尤其是加强了对小物体的识别能力。正如作者所说,这仅仅是他们近一年的一个工作报告(TECH REPORT),不算是一个完整的paper,因为他们实际上是把其它论文的一些工作在YO...原创 2019-08-07 02:23:54 · 1538 阅读 · 0 评论 -
YOLO v2学习总结
文章目录简介精度改进Batch NormalizationHigh Resolution ClassifierConvolutional With Anchor BoxesDimension ClustersNew Network: Darknet-19Direct location prediction(直接位置预测)Fine-Grained Features(细粒度特征)Multi-Scale...原创 2019-08-07 02:09:27 · 1547 阅读 · 0 评论 -
YOLO v1学习总结
文章目录简介YOLO v1简介首先题外话,You Only Look Once,这名字我太喜欢了。现在最新的是YOLO v3,不过要讲YOLO v3,需要YOLO v1和YOLO v2做铺垫,所以一并介绍。近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CN...原创 2019-08-06 22:46:19 · 636 阅读 · 0 评论 -
Faster R-CNN学习总结
文章目录简介网络结构Fast R-CNNRPNAnchorsProposals生成损失函数References简介本文假定读者已经有了一定的目标检测的预备知识,否则请戳博客卷积神经网络总结及R-CNN系列目标检测算法总结(应该还不错,欢迎戳~)。本文将对Faster R-CNN中的关键点进行介绍,其它特别细节的点还是推荐阅读论文。注:本文参考了很多其他文章,最后均给出了链接,感谢分享。Fa...原创 2019-08-06 20:27:10 · 766 阅读 · 0 评论 -
Mask R-CNN学习总结
额。。。。大佬写得好到炸(强烈推荐!),实在没必要徒劳,故转载,,,,灰常灰常感谢各位大佬。。。。。不断更新目标检测和语义分割的文章,感兴趣的请关注我。令人拍案称奇的Mask RCNN最近在做一个目标检测项目,用到了Mask RCNN。我仅仅用了50张训练照片,训练了1000步之后进行测试,发现效果好得令人称奇。就这个任务,很久之前用yolo v1训练则很难收敛。不过把它们拿来比当然不公平,但我...原创 2019-08-08 22:26:41 · 1879 阅读 · 0 评论 -
FPN学习总结
文章目录简介框架解析利用FPN构建Faster R-CNN检测器为什么FPN能够很好地处理多尺度目标总结References简介FPN——Feature Pyramid Networks for Object Detection,其是CVPR 2017年的论文,在多尺度目标检测领域很强!很多多尺度的目标检测算法都采用了FPN作为backbone,很强很常见。作者提出的多尺度的object d...原创 2019-08-08 20:58:26 · 932 阅读 · 0 评论 -
R-FCN学习总结
文章目录简介网络结构Position-Sensitive Score Map解析留坑(懂的老哥希望能不吝赐教)Position-Sensitive Rol Pooling解析简介R-FCN——Object Detection via Region-based Fully Convolutional Networks,这篇文章提出了一种高效简洁的目标检测模型 R-FCN(Region-based...原创 2019-08-08 12:13:31 · 702 阅读 · 0 评论 -
目标检测:R-CNN系列,YOLO系列,SSD总结
对于现在想入门目标检测的同学来说,R-CNN系列,YOLO系列和SSD很可能是最早会接触的一些目标检测算法。不得不说,这三个算法真的是非常非常经典的目标检测算法,在熟悉了这三个算法之后,基本就可以说自己已经在目标检测领域入门了。目前网络上已经有了很多很不错的讲解这三个算法模型的文章,自认为在有限的时间内很难去写到那种高质量的文章,况且也没必要(自己本来已经写了好多这三个算法的详解,不过质量不满意...原创 2019-08-03 17:32:52 · 7265 阅读 · 1 评论 -
AlexNet,ResNet34,SqueezeNet模型的实现
文章目录概要__init__.pybasic_module.py具体模型定义alexnet.pyresnet34.pysqueezenet.pyReferences概要如果对这几种基础模型不太了解,请先参考博客。首先来看程序文件的组织结构:├── checkpoints/├── data/│ ├── __init__.py│ ├── dataset.py│ └── ge...原创 2019-06-16 10:21:49 · 1029 阅读 · 2 评论 -
目标检测算法总结—R-CNN系列(R-CNN、Fast R-CNN、Faster R-CNN)
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。object detection技术的演进:RCNN->Spp...原创 2019-06-04 14:35:54 · 1702 阅读 · 0 评论 -
猫狗二分类实战(PyTorch)
PyTorch实战指南文章目录PyTorch实战指南比赛介绍文件组织架构关于`__init__.py`数据加载模型定义工具函数配置文件main.py训练验证测试帮助函数使用争议References在学习某个深度学习框架时,掌握其基本知识和接口固然重要,但如何合理组织代码,使得代码具有良好的可读性和可扩展性也必不可少。本文不会深入讲解过多知识性的东西,更多的则是传授一些经验,这些内容可能有些争议...原创 2019-06-13 21:40:21 · 15523 阅读 · 15 评论 -
基本卷积神经网络(CNN) —— AlexNet,VGG-Net,Inception系列,ResNet,DenseNet等
文章目录概要介绍基本卷积神经网络(CNN)AlexNetZF-NetVGG-NetInception系列Inception-V1:GoogLeNetInception-V2:An Improved Version of Inception-V1Inception-V3:Factorizing NxN into 1xN and Nx1Inception-V4:Inception with skip...原创 2019-06-05 21:41:52 · 5240 阅读 · 0 评论 -
CIFAR-10图像分类(基于PyTorch)
数据集介绍CIFAR-10是一个常用的彩色图片数据集,它有10个类别: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。每张图片都是3×32×323\times32\times323×32×32,也即3-通道彩色图片,分辨率为32×3232\times3232×32。...原创 2019-05-28 18:31:03 · 18308 阅读 · 6 评论