常见ADC原理及指标

本文介绍了两种常见的模拟数字转换器(ADC)类型:SAR型和Σ-Δ型。SAR型ADC以逐次逼近方式实现高精度、低功耗转换,适合中等采样速率应用;而Σ-Δ型ADC利用过采样和数字滤波技术,提供低成本、低分辨率但宽动态范围的转换。主要ADC指标包括分辨率、转换速率、静态误差如偏移增益误差、满刻度误差以及微分和积分非线性。这些参数对于选择合适的ADC至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、ADC类型

常见ADC有:SAR型(逐次逼近式)、∑-△型

1、SAR型(逐次逼近式)

逐次逼近式ADC通过输入模拟量的信号与不同的参考电压作多次比较,使转换所得的数字量逐次逼近输入模拟量对应值。

分辨率中断(<18)、采样速率中等、功耗低、精度高、价格贵。

2、∑-△型

Σ-Δ转换器的模拟部分非常简单(类似于一个1位ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于Σ-Δ型ADC更接近于数字器件,因而其制造成本非常低廉。
可以看作使用1位ADC,结合过采样、噪声形成、数字滤波和抽取数字信号处理技术,使得能够从一个低分辨率的ADC获取宽动态范围。

分辨率中等(<24)、采样速率低、功耗高、精度低、价格低。

二、ADC指标

1、动态指标
  • 分辨率:又称采样精度,通常以数字信号的位数N来表示,一般有10位、12位、16位等,表示可测量的模拟量最小变化量。
  • 转换速率:ADC从开始转换到转换完成所需要的时间,采样信号频率越高,所需的ADC采样速率也应越高。
2、静态指标
  • 最小误差(Quantizing Error):由于ADC分辨率有限而导致的误差,通常为1个或半个最小数字量表示的模拟变化量。
  • 偏移增益误差(Offset/Gain Error):实际ADC线性方程与理想ADC线性方程的偏差(斜率、截距不一致)。
  • 满刻度误差(Full Scale Error):满刻度输入时,对应的实际输入信号与理想输入信号的差值。
  • 微分非线性(Differential nonlinearity,DNL):ADC相邻两刻度的最大偏差。
  • 积分非线性(Integral nonlinearity,INL):ADC数值点对应的模拟量和真实值之间最大误差值,即ADC输出数值偏离理想线性最大的距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Loong7066

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值