[CSP-S 2022] 假期计划(民间数据)
题目描述
小熊的地图上有 n n n 个点,其中编号为 1 1 1 的是它的家、编号为 2 , 3 , … , n 2, 3, \ldots, n 2,3,…,n 的都是景点。部分点对之间有双向直达的公交线路。如果点 x x x 与 z 1 z_1 z1、 z 1 z_1 z1 与 z 2 z_2 z2、……、 z k − 1 z_{k - 1} zk−1 与 z k z_k zk、 z k z_k zk 与 y y y 之间均有直达的线路,那么我们称 x x x 与 y y y 之间的行程可转车 k k k 次通达;特别地,如果点 x x x 与 y y y 之间有直达的线路,则称可转车 0 0 0 次通达。
很快就要放假了,小熊计划从家出发去 4 4 4 个不同的景点游玩,完成 5 5 5 段行程后回家:家 → \to → 景点 A → \to → 景点 B → \to → 景点 C → \to → 景点 D → \to → 家且每段行程最多转车 k k k 次。转车时经过的点没有任何限制,既可以是家、也可以是景点,还可以重复经过相同的点。例如,在景点 A → \to → 景点 B 的这段行程中,转车时经过的点可以是家、也可以是景点 C,还可以是景点 D → \to → 家这段行程转车时经过的点。
假设每个景点都有一个分数,请帮小熊规划一个行程,使得小熊访问的四个不同景点的分数之和最大。
输入格式
第一行包含三个正整数 n , m , k n, m, k n,m,k,分别表示地图上点的个数、双向直达的点对数量、每段行程最多的转车次数。
第二行包含 n − 1 n - 1 n−1 个正整数,分别表示编号为 2 , 3 , … , n 2, 3, \ldots, n 2,3,…,n 的景点的分数。
接下来 m m m 行,每行包含两个正整数 x , y x, y x,y,表示点 x x x 和 y y y 之间有道路直接相连,保证 1 ≤ x , y ≤ n 1 \le x, y \le n 1≤x,y≤n,且没有重边,自环。
输出格式
输出一个正整数,表示小熊经过的 4 4 4 个不同景点的分数之和的最大值。
样例 #1
样例输入 #1
8 8 1
9 7 1 8 2 3 6
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 1
样例输出 #1
27
样例 #2
样例输入 #2
7 9 0
1 1 1 2 3 4
1 2
2 3
3 4
1 5
1 6
1 7
5 4
6 4
7 4
样例输出 #2
7
提示
【样例解释 #1】
当计划的行程为 1 → 2 → 3 → 5 → 7 → 1 1 \to 2 \to 3 \to 5 \to 7 \to 1 1→2→3→5→7→1 时, 4 4 4 个景点的分数之和为 9 + 7 + 8 + 3 = 27 9 + 7 + 8 + 3 = 27 9+7+8+3=27,可以证明其为最大值。
行程 1 → 3 → 5 → 7 → 8 → 1 1 \to 3 \to 5 \to 7 \to 8 \to 1 1→3→5→7→8→1 的景点分数之和为 24 24 24、行程 1 → 3 → 2 → 8 → 7 → 1 1 \to 3 \to 2 \to 8 \to 7 \to 1 1→3→2→8→7→1 的景点分数之和为