[NOIP2016 提高组] 愤怒的小鸟
题目描述
Kiana
最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于 ( 0 , 0 ) (0,0) (0,0) 处,每次 Kiana
可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y = a x 2 + b x y=ax^2+bx y=ax2+bx 的曲线,其中 a , b a,b a,b 是 Kiana
指定的参数,且必须满足 a < 0 a < 0 a<0, a , b a,b a,b 都是实数。
当小鸟落回地面(即 x x x 轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有 n n n 只绿色的小猪,其中第 i i i 只小猪所在的坐标为 ( x i , y i ) \left(x_i,y_i \right) (xi,yi)。
如果某只小鸟的飞行轨迹经过了 ( x i , y i ) \left( x_i, y_i \right) (xi,yi),那么第 i i i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过 ( x i , y i ) \left( x_i, y_i \right) (xi,yi),那么这只小鸟飞行的全过程就不会对第 i i i 只小猪产生任何影响。
例如,若两只小猪分别位于 ( 1 , 3 ) (1,3) (1,3) 和 ( 3 , 3 ) (3,3) (3,3),Kiana
可以选择发射一只飞行轨迹为 y = − x 2 + 4 x y=-x^2+4x y=−x2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。
而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对 Kiana
来说都很难,所以Kiana
还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有 T T T 个关卡,现在 Kiana
想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。
输入格式
第一行包含一个正整数 T T T,表示游戏的关卡总数。
下面依次输入这 T T T 个关卡的信息。每个关卡第一行包含两个非负整数 n , m n,m n,m,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。接下来的 n n n 行中,第 i i i 行包含两个正实数 x i , y i x_i,y_i xi,yi,表示第 i i i 只小猪坐标为 ( x i , y i ) (x_i,y_i) (xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。
如果 m = 0 m=0 m=0,表示Kiana
输入了一个没有任何作用的指令。
如果 m = 1 m=1 m=1,则这个关卡将会满足:至多用 ⌈ n / 3 + 1 ⌉ \lceil n/3 + 1 \rceil ⌈n/3+1⌉ 只小鸟即可消灭所有小猪。
如果 m = 2 m=2