数论
兔蠢蠢
这个作者很懒,什么都没留下…
展开
-
The 2019 ICPC Asia Yinchuan Regional Programming Contest/2019银川区域赛 D Easy Problem(莫比乌斯反演+欧拉降幂)
∑i1=1m∑i2=1m∑i3=1m⋯∑in=1m[gcd(i1,i2,i3,⋯ ,in)==d](i1i2i3⋯in)k\sum_{i_1=1}^m\sum_{i_2=1}^m\sum_{i_3=1}^m\cdots\sum_{i_n=1}^m[gcd(i_1,i_2,i_3,\cdots,i_n)==d](i_1i_2i_3\cdots i_n)^ki1=1∑mi2=1∑mi3=1∑...原创 2019-11-30 12:11:48 · 1761 阅读 · 4 评论 -
牛客国庆集训派对Day5 L.数论之神
时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 262144K,其他语言524288K64bit IO Format: %lld题目描述终于活成了自己讨厌的样子。这是她们都还没长大的时候发生的故事。那个时候,栗子米也不需要为了所谓的爱情苦恼。她们可以在夏日的午后,花大把的时间去研究生活中一些琐碎而有趣的事情,比如数论。有一天西柚柚问了栗子米一个题,她想知道中有多少不同的...原创 2018-11-21 14:55:11 · 226 阅读 · 0 评论 -
2019蓝桥杯省赛(软件类A组) RSA
#include <bits/stdc++.h>using namespace std;long long n=1001733993063167141;long long d=212353;long long c=20190324;long long p=891234941;long long q=1123984201;long long e=82381609393152...原创 2019-04-07 21:07:27 · 1132 阅读 · 7 评论 -
GCD(i,j)求和
题意∑i=1n∑j=1mgcd(i,j)\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)i=1∑nj=1∑mgcd(i,j)1<=n,m<=10111<=n,m<=10^{11}1<=n,m<=1011思路可以对式子进行一些变化如下令N=min(n,m)N=min(n,m)N=min(n,m)原式=...原创 2019-06-07 19:19:45 · 4085 阅读 · 0 评论 -
51nod 1258 序列求和 V4(拉格朗日插值法)
#include<bits/stdc++.h>using namespace std;const int mod=1e9+7;const int N=50005;long long a[N];long long fac[N];long long inv[N];long long quickmod(long long a,long long b){ long lo...原创 2019-06-02 21:10:19 · 293 阅读 · 0 评论 -
The 2019 ACM-ICPC China Shannxi Provincial Programming Contest B. Product(杜教筛+约数)
题意给你n(n≤109)n(n\leq 10^9)n(n≤109),m(m≤2×109)m(m\leq 2\times10^9)m(m≤2×109),p(p≤2×109)p(p\leq 2\times10^9 )p(p≤2×109),ppp为质数求∏i=1n∏j=1n∏k=1nmgcd(i,j)[k∣gcd(i,j)]\prod_{i=1}^n\prod_{j=1}^n\prod_{k=1}^...原创 2019-06-08 17:19:32 · 458 阅读 · 0 评论 -
2019 ICPC 邀请赛(南昌) B-Polynomial(拉格朗日插值法)
题面定义了f(x)=a0+a1x1+a2x2+⋯+anxnf_{(x)}=a_0+a_1x^1+a_2x^2+\cdots+a_nx^nf(x)=a0+a1x1+a2x2+⋯+anxn.数字可能会非常大,所以对9999991取模。对于一个多项式,XH不知道任意一个aia_iai,但是他知道f(0),f(1),f(2)⋯f(n)f_{(0)},f_{(1)},f_{(2)}\cdot...原创 2019-06-03 13:20:31 · 1015 阅读 · 0 评论 -
HDU 5608 function(杜教筛)
functionTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1700 Accepted Submission(s): 607Problem DescriptionThere is a function f(x),which...原创 2019-06-10 10:55:26 · 313 阅读 · 0 评论 -
HDU 5728 PowMod (递归式+欧拉降幂)
PowModTime Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 1599 Accepted Submission(s): 559Problem DescriptionDeclare:k=∑i=1mφ(i∗n) mo...原创 2019-06-23 17:47:38 · 607 阅读 · 0 评论 -
2019牛客暑期多校训练营(第五场)B.generator 1(广义斐波那契数列找循环节)
题意已知x0,x1,a,b(1≤109)x_0,x_1,a,b(1\leq10^9)x0,x1,a,b(1≤109),求xn=axn−1+bxn−2( mod m)x_n=ax_{n-1}+bx_{n-2}(\ mod \ m)xn=axn−1+bxn−2( mod m)1≤n≤10106,109<m≤2×1091\leq n\...原创 2019-08-03 11:54:44 · 845 阅读 · 3 评论 -
2019牛客暑期多校训练营(第三场)D.Big Integer(费马小定理+找循环节)
题意已知序列AAA为1,11,111,1111,...1,11,111,1111,...1,11,111,1111,...,求∑i=1n∑j=1m[A(ij)%p==0]\sum_{i=1}^n\sum_{j=1}^m[A(i^j)\%p==0]i=1∑nj=1∑m[A(ij)%p==0]思路易知A(n)=10n−19A(n)=\frac{10^n-1}{9}A(n)=910n−1,...原创 2019-07-26 10:39:33 · 548 阅读 · 1 评论 -
HDU 6706 huntian oy(杜教筛)
题意给你n计算函数f(n,a,b)=∑i=1n∑j=1igcd(ia−ja,ib−jb)[gcd(i,j)==1]mod  1e9+7f(n,a,b)=\sum_{i=1}^{n}\sum_{j=1}^igcd(i^a-j^a,i^b-j^b)[gcd(i,j)==1]\mod 1e^9+7f(n,a,b)=i=1∑nj=1∑igcd...原创 2019-08-24 22:29:59 · 521 阅读 · 0 评论 -
2019牛客暑期多校训练营(第九场)A.The power of Fibonacci(循环节)
题意{f0=0f1=1fn=fn−1+fn−2,n≥2\left\{\begin{matrix}f_0=0\\ f_1=1\\ f_n=f_{n-1}+f_{n-2},n\geq 2\end{matrix}\right.⎩⎨⎧f0=0f1=1fn=fn−1+fn−2,n≥2给你nnn和mmm求∑i=0nfim %1000000000\sum_{i=0}^{n}...原创 2019-08-16 19:54:53 · 546 阅读 · 3 评论 -
2019牛客暑期多校训练营(第九场)A.The power of Fibonacci(Fibonomial coefficients+常系数线性递推)
题意{f0=0f1=1fn=fn−1+fn−2,n≥2\left\{\begin{matrix}f_0=0\\ f_1=1\\ f_n=f_{n-1}+f_{n-2},n\geq 2\end{matrix}\right.⎩⎨⎧f0=0f1=1fn=fn−1+fn−2,n≥2给你nnn和mmm求∑i=0nfim %1000000000\sum_{i=0}^{n}...原创 2019-08-18 13:43:17 · 415 阅读 · 0 评论 -
The Preliminary Contest for ICPC Asia Nanjing 2019 南京网络赛 E. K Sum(杜教筛+欧拉降幂)
标题有函数fn(k)=∑l1=1n∑l2=1n⋯∑lk=1ngcd(l1,l2,⋯ ,lk)2f_{n}(k)=\sum_{l_1=1}^{n}\sum_{l_2=1}^{n}\cdots\sum_{l_k=1}^{n}gcd(l_1,l_2,\cdots,l_k)^2fn(k)=l1=1∑nl2=1∑n⋯lk=1∑ngcd(l1,l2,⋯,lk...原创 2019-09-01 18:20:49 · 462 阅读 · 0 评论 -
ACM-ICPC 2018 徐州赛区网络预赛 D. Easy Math(递归式+杜教筛)
Given a positive integers nnn , Mobius functionμ(n)μ(n)\mu(n) is defined as follows:μ(n)=⎧⎩⎨1(−1)k0n=1n=p1p2⋯pkotherμ(n)={1n=1(−1)kn=p1p2⋯pk0other \mu(n) = \begin{cases} 1 &n = 1 \\ (-1)^k & n = p_1...原创 2018-09-10 15:13:38 · 784 阅读 · 3 评论 -
NEFU 1507 Fibonacci And Gcd(莫比乌斯反演)
Fibonacci And Gcd Problem:1507 Time Limit:1000ms Memory Limit:65535K Description 给定n和m求解上述式子 Input 第一行一个T,代表有T组数据,1<=T<=10 接下来T行每行两个数字n和m,1<=n,m<=1e6 Output 输出答案,每行代表一个答案 Samp...原创 2018-09-10 14:17:55 · 281 阅读 · 0 评论 -
HDU 6390 GuGuFishtion (莫比乌斯反演)
GuGuFishtionTime Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 1008 Accepted Submission(s): 377Problem Description Today XianYu is too bu...原创 2018-08-14 21:16:04 · 223 阅读 · 0 评论 -
欧几里得算法
欧几里得算法又叫辗转相除法,用来求得两个数的最大公约数,记作gcd(a,b)原理:设有n,m(m>n),他们的最大公约数为t,则n与m都能被t整除,且n和m的线性组合xn+ym也能被t整除,又有m可拆成m=q*n+r(r为m%n的余数),移项得r=m-q*n也可被t整除,所以m=q*n+r中n和r都包含最大公约数t这个因子,故再将n拆分n=q'*r+p,因为n和r都有含有为t的因子所以原创 2017-06-04 19:47:01 · 1159 阅读 · 1 评论 -
矩阵快速幂(矩阵连乘)
矩阵快速幂的本质还是快速幂,是解决高次幂取模的问题的一种形式,他适用于有矩阵高次幂的运算我们以hdu1021为例Fibonacci AgainTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 61948 Accept原创 2017-07-29 19:42:20 · 1006 阅读 · 0 评论 -
唯一分解定理(算术基本定理)
定义:任何一个大于1的自然数 ,都可以唯一分解成有限个质数的乘积 ,这里 均为质数,其诸指数 是正整数。——百科我们知道了唯一分解定理后有什么用呢应用一:N的因子个数就为 应用二:N的因子和为 对N进行分解时我们要先打个素数表打到√N就够了,然后用试除法来枚举N的因子,时间复杂度为O(√N)const int maxn原创 2017-08-04 13:37:05 · 854 阅读 · 0 评论 -
欧拉函数
对任意整数n来说,把{1,2,3,4,5......n-1}中与n互质的数的个数称为欧拉函数φ(n),如φ(3)=2,φ(5)=4,很明显的,由此我们可知,当n为质数(n与比他小的数都互质)时,φ(n)=n-1,当n为合数时,φ(n)欧拉函数的值可以由公式 直接推出,p1到pn是x的质因数原创 2017-08-05 20:38:58 · 515 阅读 · 0 评论 -
2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function
f(cos(x))=cos(n∗x) holds for all x.Given two integers nn and mm, you need to calculate the coefficient ofxm x^m in f(x), modulo 998244353. Input FormatMultiple test cases (no more than 100).Each原创 2017-09-16 16:58:21 · 505 阅读 · 0 评论 -
本原勾股数组(PPT)
概念本原勾股数组(PPT)是一个三元组(a,b,c),其中a,b,c没有公因数即gcd(a,b,c)=1 且满足 a2+b2=c2a^{2}+b^{2}=c^{2} (3,4,5), (5,12,13), (8,15,17), (7,24,25), (20,21,29), (9,40,41)等性质(1) a与b奇偶性不同且c总为奇数 证明:我们用分情况讨论的方式来证明若a,b都为原创 2017-09-20 13:39:54 · 1008 阅读 · 0 评论 -
扩展欧几里得算法
扩展欧几里得算法是啥,那就要先知道什么是欧几里得算法欧几里得算法扩展欧几里得算法是欧几里得算法的推广,利用欧几里得算法的思想和递归求得贝祖等式a*x+b*y=gcd(a,b)不定方程中的一组x和y的解。原理如下:设a>b当b=0时,很显然a*x=gcd(a,b)=a,所以x=1,而y为任意数,为了同一和方便我们令y=0;当a>b>0时,设有两组等式a*x1+b*y1=g原创 2017-06-06 16:49:17 · 10630 阅读 · 2 评论 -
1到n,n%i的和
我们来求解这样一个问题 ∑i=1nn%i" role="presentation" style="text-align: center; position: relative;">∑i=1nn%i∑i=1nn%i\sum_{i=1}^{n}n\%i 我们可以把n%i" role="presentation" style="position: relat原创 2018-02-01 13:49:52 · 503 阅读 · 0 评论 -
FFT求解卷积
卷积已知两个多项式 A(x)=a0+a1x1+a2x2+a3x3+⋯+anxn" role="presentation" style="position: relative;">A(x)=a0+a1x1+a2x2+a3x3+⋯+anxnA(x)=a0+a1x1+a2x2+a3x3+⋯+anxnA(x)=a_{0}+a_{1}x^1+a_{2}x^2+a_{3}x^3+\cdot原创 2018-01-26 15:21:07 · 1484 阅读 · 0 评论 -
母函数详解
定义 生成函数即母函数,是组合数学中尤其是计数方面的一个重要理论和工具。生成函数有普通型生成函数和指数型生成函数两种,其中普通型用的比较多。形式上说,普通型生成函数用于解决多重集的组合问题,而指数型母函数用于解决多重集的排列问题。母函数还可以解决递归数列的通项问题(例如使用母函数解决斐波那契数列的通项公式)。普通型母函数将任意一个序列a0,a1,a2,a3,⋯,ana0,a1...原创 2018-03-12 19:41:35 · 1623 阅读 · 1 评论 -
牛客网暑期ACM多校训练营(第一场) F.Sum of Maximum(自然数幂次和)
链接:https://www.nowcoder.com/acm/contest/139/F 来源:牛客网题目描述 Given a1, a2, …, an, find modulo (109+7). 输入描述: The input consists of several test cases and is terminated by end-of-file. The firs...原创 2018-07-23 17:17:54 · 482 阅读 · 0 评论 -
HDU 6304 Chiaki Sequence Revisited(找规律+二分)
Chiaki Sequence RevisitedTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2004 Accepted Submission(s): 560Problem Description Chiaki is...原创 2018-07-25 19:34:16 · 334 阅读 · 0 评论 -
牛客网暑期ACM多校训练营(第四场) A.Ternary String(欧拉降幂)
链接:https://www.nowcoder.com/acm/contest/142/A 来源:牛客网题目描述 A ternary string is a sequence of digits, where each digit is either 0, 1, or 2. Chiaki has a ternary string s which can self-reproduce. ...原创 2018-07-29 16:32:16 · 265 阅读 · 0 评论 -
牛客网暑期ACM多校训练营(第六场) J.Heritage of skywalkert(nth_element暴力)
链接:https://www.nowcoder.com/acm/contest/144/J 来源:牛客网题目描述 skywalkert, the new legend of Beihang University ACM-ICPC Team, retired this year leaving a group of newbies again. Rumor has it that he...原创 2018-08-05 13:08:25 · 240 阅读 · 0 评论 -
快速幂
快速幂就是快速幂取模的简称,用到了二分的思想,用来求解a^b%p的这类问题。在知道代码前,需要了解一些关于模运算的规则基本运算规则如下(a + b) % p = (a % p + b % p) % p (1)(a - b) % p = (a % p - b % p) % p (2)(a * b) % p = (a % p * b % p) % p (3)(a^b) % p原创 2017-04-21 23:37:59 · 232 阅读 · 0 评论