先列举两个推论:
根据前序和中序遍历顺序可以唯一确定一棵二叉树;
根据中序和后序遍历顺序可以唯一确定一棵二叉树;
题目:
若一棵二叉树的前序遍历和后序遍历分别为1,2,3,4和4,3,2,1,则该二叉树的中序遍历不会是:
A、1,2,3,4
B、2,3,4,1
C、3,2,4,1
D、4,3,2,1
因为根据前序和后序无法确定一棵二叉树,又由于这里是选择题,则可以结合题目进行逆向求解:
因为题目是要求解中序,则选项中四个都可以假设作为中序遍历的结果,根据前序和中序再去验证得到的后序是否和题目所给的后序遍历顺序一致。
A:前序:1,2,3,4,中序:1,2,3,4,则二叉树的形状如下:
则其后序遍历结果为:4,3,2,1,与题目所给的后序遍历一致,所以A选项可以是中序遍历。
B:前序:1,2,3,4,中序:2,3,4,1,则二叉树的形状如下:
则其后序遍历结果为4,3,2,1,与题目所给的后序遍历一致,所以B选项可以是中序遍历。
C:前序:1,2,3,4,中序:3,2,4,1,则二叉树的形状如下:
则其后序遍历结果为3,4,2,1,与题目所给的后序遍历不一致,所以C选项不可以是中序遍历。
D:前序:1,2,3,4,中序:4,3,2,1,则二叉树的形状如下:
则其后序遍历结果为4,3,2,1,与题目所给的后序遍历一致,所以D选项可以是中序遍历。