CF 1108 E2 Array and Segments

1 篇文章 0 订阅
1 篇文章 0 订阅

题意:给你一个序列,给你m个区间,你可以选择其中的若干区间进行区间-1操作,每个区间只能选一次,问你最后整个的序列的最大值-最小值的差值最大为多少。

思路一:总共只有300个区间,将其离散化最多只有2m个区间,枚举一个区间,将其最小值当为最小值,再枚举一个区间其最大值当为最大值,首先保持最大值不受影响,那么最小值能改变的最多为通过它的区间数但不通过最大值区间的数目。时间O(4*m^3)

#include<bits/stdc++.h>
using namespace std;
int n,m,e[1010000],mii[201000],maa[201000],l[201000],r[201000],a[201000],s[201000],ans[201000];
int anssum,ansmx,ma,mi;
int main()
{
	scanf("%d%d",&n,&m);
	int ma=-1e6,mi=1e6,cnt=0;
	for(int i=1;i<=n;i++) 
	{
		scanf("%d",&a[i]);
    	ma=max(ma,a[i]);
    	mi=min(mi,a[i]);
	}
	ansmx=ma-mi;
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d",&l[i],&r[i]);
		e[++cnt]=l[i];e[++cnt]=r[i]+1;
	}
	e[++cnt]=1;e[++cnt]=n+1;
	sort(e+1,e+1+cnt);
	cnt=unique(e+1,e+1+cnt)-e-1;
	for(int i=1;i<=cnt;i++)
	{
		mii[i]=maa[i]=a[e[i]];
		for(int j=e[i]+1;j<e[i+1];j++)
		{
			mii[i]=min(a[j],mii[i]);
			maa[i]=max(a[j],maa[i]);
		}
	} 
	for(int i=1;i<=cnt;i++)
		for(int j=1;j<=cnt;j++)
		 if(i!=j && e[i]<=n && e[j]<=n)
		 {
		 	int sum=0;
		 	for(int k=1;k<=m;k++)
		 	if((l[k]<=e[i]&& e[i+1]-1<=r[k])&&!( l[k]<=e[j] && e[j+1]-1<=r[k]))
		 	   s[++sum]=k;
		 	if(maa[j]-mii[i]+sum>ansmx)
		 	{
		 		ansmx=maa[j]-mii[i]+sum;
		 		anssum=sum;
		 		for(int k=1;k<=sum;k++)
		 		   ans[k]=s[k];
			}
		 }
	printf("%d\n",ansmx);
	printf("%d\n",anssum);
	for(int i=1;i<=anssum;i++) printf("%d ",ans[i]);
} 

思路二:我们离散化后每个区间的最小值,将其减小区间通过它的的次数,最后查询所有区间(1,n)的最大值

#include <vector>  
#include <stdio.h>  
#include <string.h>  
#include <stdlib.h>  
#include <iostream>  
#include <algorithm>  
using namespace std;  
typedef long long ll;  
const ll inf=0x3f3f3f3f3f3f3f3f;  
const int maxn=200010;  
vector<int>G[maxn];  
ll max1[maxn*4],lazy[maxn*4];  
int L[maxn],R[maxn],cost[maxn];  
int n,m,e[1010000],mii[201000],a[maxn],maa[201000],l[201000],r[201000],s[201000],ans[201000];
int anssum,ansmx,ma,mi;
void pushup(int node){  
    max1[node]=max(max1[node<<1],max1[node<<1|1]);  
}  
void pushdown(int node){  
    if(lazy[node]){  
        lazy[node<<1]+=lazy[node];  
        lazy[node<<1|1]+=lazy[node];  
        max1[node<<1]+=lazy[node];  
        max1[node<<1|1]+=lazy[node];  
        lazy[node]=0;  
    }  
}  
void buildtree(int le,int ri,int node){  
    if(le==ri){  
        max1[node]=a[le];
        return ;  
    }  
    int t=(le+ri)>>1;  
    buildtree(le,t,node<<1);  
    buildtree(t+1,ri,node<<1|1);  
    pushup(node);  
}  
void update(int l,int r,int x,int le,int ri,int node){  
    if(l<=le&&ri<=r){  
        lazy[node]+=(ll)x;  
        max1[node]+=(ll)x;  
        return ;  
    }  
    pushdown(node);  
    int t=(le+ri)>>1;  
    if(l<=t) update(l,r,x,le,t,node<<1);  
    if(r>t) update(l,r,x,t+1,ri,node<<1|1);  
    pushup(node);  
}  
ll query(int l,int r,int le,int ri,int node){  
    if(l<=le&&ri<=r) return max1[node];  
    pushdown(node);  
    ll ans=-inf;  
    int t=(le+ri)>>1;  
    if(l<=t) ans=max(ans,query(l,r,le,t,node<<1));  
    if(r>t) ans=max(ans,query(l,r,t+1,ri,node<<1|1));  
    return ans;  
}  
int main()
{
	scanf("%d%d",&n,&m);
	int ma=-1e6,mi=1e6,cnt=0;
	for(int i=1;i<=n;i++) 
	{
		scanf("%d",&a[i]);
    	ma=max(ma,a[i]);
    	mi=min(mi,a[i]);
	}
	buildtree(1,n,1);
	ansmx=ma-mi;
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d",&l[i],&r[i]);
		e[++cnt]=l[i];e[++cnt]=r[i]+1;
	}
	e[++cnt]=1;e[++cnt]=n+1;
	sort(e+1,e+1+cnt);
	cnt=unique(e+1,e+1+cnt)-(e+2);//区间内的元素-1
	for(int i=1;i<=cnt;i++)
	{
		mii[i]=maa[i]=a[e[i]];
		for(int j=e[i]+1;j<e[i+1];j++)
		{
			mii[i]=min(a[j],mii[i]);
			maa[i]=max(a[j],maa[i]);
		}
	} 
	for(int i=1;i<=cnt;i++)
	{
		int sum=0;
//		printf("i=%d e[i]=%d e[i+1]-1=%d\n",i,e[i],e[i+1]-1);
		for(int j=1;j<=m;j++)
		   if(l[j]<=e[i]&&e[i+1]-1<=r[j])
		   {
		   		update(l[j],r[j],-1,1,n,1);
		   		s[++sum]=j;
		   }	
		int su=query(1,n,1,n,1);
		if(su-mii[i]+sum>ansmx)
		{
			ansmx=su-mii[i]+sum;
		 	anssum=sum;
		 	for(int k=1;k<=sum;k++)
		 		   ans[k]=s[k];
		}
		for(int j=1;j<=m;j++)
		   if(l[j]<=e[i]&&e[i+1]-1<=r[j])
		   {
		   		update(l[j],r[j],1,1,n,1);
		   }	
	}
	printf("%d\n",ansmx);
	printf("%d\n",anssum);
	for(int i=1;i<=anssum;i++) printf("%d ",ans[i]);	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值