PTA L3-020

题意:给定一个全部由小写英文字母组成的字符串,允许你至多删掉其中 3 个字符,结果可能有多少种不同的字符串?

思路:

dp[i][j]表示做到第i个字符删除j个字符不重复的状态数,

如果不考虑重复字符串:

dp[i][j]=dp[i-1][j-1]+dp[i-1][j]

重复的个数为:

X_ _X,这种状态,删除前三位与删除后三位是同一种状态

X_X,这种状态,删除前两位与删除后两位是同一种状态

所以我们记d为与当前操作字符相同的前一个字符的位置,

dp[i][j]-=dp[d-1][j-(i-d)]

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<string>
#include<map>
#include<queue>
#include<vector>
#include<stack>
#define ll long long
#define maxn 4001000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
ll dp[1010100][5];
char s[1010100];
int l,d,pre[100];
ll rd()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
void init()
{
    scanf("%s",s);
}
void work()
{
    l=strlen(s);
    dp[0][0]=1;
    rep(i,1,l)
    {
        dp[i][0]=1;
        d=pre[s[i-1]-'a'];
        pre[s[i-1]-'a']=i;
        rep(j,1,3)
        {
            dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
            if(d&&(j-(i-d)>=0))
                dp[i][j]-=dp[d-1][j-(i-d)];
        }
    }
    printf("%lld\n",dp[l][0]+dp[l][1]+dp[l][2]+dp[l][3]);
}
int main()
{
    init();
    work();
}

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值