第2章:基础知识——《知识图谱概念与技术》肖仰华

本文介绍了知识图谱的基础知识,包括知识表示的图和三元组表示,以及知识图谱与机器学习、自然语言处理的紧密关系。深入探讨了知识图谱的数值表示方法,如基于距离和翻译的模型。同时,概述了机器学习的基本概念,如深度学习中的卷积神经网络和循环神经网络,以及自然语言处理的基本任务和文本向量表示。
摘要由CSDN通过智能技术生成

2.1 概述

知识图谱与知识表示的关系:

知识图谱狭义概念是一类语义网络,语义网络只是各种知识表示中的一种。

知识图谱与自然语言处理关系密切,体现在:

  1. 知识提取的一个重要途径是从自由文本中抽取,而文本信息抽取是自然语言处理的核心问题之一。
  2. 知识图谱构建好之后通常可以用作支撑自然语言理解的背景知识。

知识图谱与数据库的关系:

知识图谱在构建好之后和进入应用之前还需要实现对图谱数据的高效管理,包括语义丰富的查询表达、高效的查询处理、系统化友好的图谱数据管理等。

知识图谱与机器学习的关系:

在知识图谱应用的整个生命中周期中,多个环节都与机器学习有关。

知识图谱与计算机子学科(知识表示、自然语言处理、数据库、机器学习)关系如下图所示。
在这里插入图片描述

除了与计算机各子学科有着较强的关联外,知识图谱与语言学以及认知科学等学科也有密切的关联。

2.2 知识表示

2.2.1 基本概念

知识必须经过合理的表示才能被计算机处理。知识表示是对现实世界的一种抽象(Abstract)表达。评价知识表示的两个重要因素是:

  • 表达能力(Expressiveness)
  • 计算效率(Efficiency)

知识的表示方式主要分为符号表示数值表示。在实际应用中,根据不同的学科背景,人们发展了基于图论、逻辑学、概率论的各种知识表示。

  • 语义网络、知识图谱、RDF(Resource Description Framework)、实体关系图等均是基于的知识表示。

  • 逻辑学产生了包括一阶谓词逻辑以及产生式规则在内的知识表示。

  • 概率论引进基于图论和逻辑学的知识表示,发展出了概率图模型及概率软逻辑等。

  • 图论、概率论与逻辑学的交叉领域又进一步发展出了马尔科夫逻辑网。

基于不同学科发展出来的知识表示如下图所示:
在这里插入图片描述
知识图谱较为常见的表示方式是基于图的表示方式。为了能让计算机有效地处理和利用知识图谱,还需要有知识图谱的数值化表示。

2.2.2 知识图谱的图表示

1. 基于图的表示

图在可视化时,通常用原点表示节点,用线表示节点之间的关系,如下图(a)所示。图的另一种表示形式是邻接矩阵(Adjacency Matrix),如下图(b)所示。
在这里插入图片描述

2. 基于三元组的表示

RDF是用于描述现实中资源的W3C标准,他说描述信息的一种通用方法,使信息能被计算机应用程序读取并且理解。

每个资源的一个属性及属性值,或者它与其他资源的一条关系,都可以表示成三元组,其形式如下:

  • 主体(Subject)、谓词(Predicate)及客体(Object)。如:<亚里士多德,isA,科学家>
  • 主体(Subject)、属性(Property)及属性值(Property Value)。如:<亚里士多德,出生地,Chalcis>

利用这些属性和关系,大量资源就能被连接起来,形成一个大规模RDF知识图谱数据集。因此,一个知识图谱可以视作三元组的集合。示例如下图:
在这里插入图片描述

2.2.3 知识图谱的数值表示

基本的思路是将知识图谱中的点和边表示成数值化的向量。不同的向量表示在实际应用中有着不同的效果,如何为知识图谱中的实体与关系求得最优的向量化表示,是当前知识图谱表示学习所关注的核心问题。

学习实体和关系的向量化表示的关键是,合理定义知识图谱中关于事实(即三元组<h,r,t>)的损失函数fr(h,t),其中h和t是三元组的两个实体h和t的向量化表示。在通常情况下,当事实<h,r,t>成立时,我们期望fr(h,t)最小。在建立相应优化目标之后,通常使用SGD(Stochastic Gradient Descent,随机梯度下降)等算法学习模型中的相关参数。

1. 基于距离的模型

其代表模型是SE。基本思想是当两个实体属于同一个三元组<h,r,t>时,它们的向量表示在投影空间中也应该彼此靠近。因此,定义损失函数为向量投影后的距离:
在这里插入图片描述其中,SE模型使用形式较为简单的1-范式。矩阵Wr,1和Wr,2用于三元组头实体向量h和尾实体向量t的投影操作。

2. 基于翻译的模型

(1)TransE模型。TransE模型是基于翻译思想的模型。TransE认为在知识库中,三元组<h,r,t>可以看成头实体h和尾实体t利用关系r所进行的翻译。条件是使h+r≈t,其损失函数如下:
在这里插入图片描述
基本思路如下图所示:

在这里插入图片描述
(2)TransH模型。TransE模型中的h+r≈t假设太强,导致在自反、一对多、多对一等关系下实体向量学习的错误。比如,对于自反关系r,<h,r,t>和<t,r,h>同时成立,导致h=t

为了解决上述问题,TransH模型放宽了h+r≈t这一严格假设,只要求头尾实体和关系r相对应的超平面上的投影彼此接近即可。其基本思路如下图:
在这里插入图片描述
(3)TransR模型。在TransE模型和TransH模型中,实体和关系都在相同的空间中进行表示。这种做法无法区别两个语义相近的实体在某些特定方面(关系)上的不同。因此,TransR模型提出为每个关系构造相应的向量空间,将实体与关系在不同的向量空间中分开表示。其思想如下图所示:
在这里插入图片描述
(4)TransD模型。TransD模型认为映射函数应与实体、关系同时相关。其基本思想如下图:
在这里插入图片描述

2.2.4 其他相关知识表示

1. 逻辑谓词

命题是一个非真即假的陈述。命题可以通过谓词来表示,谓词的一般形式是P(x1,x2,…,xn)。其中,P是谓词的名称,xi是谓词的项。xi既可以是常量也可以是变量。

在谓词前还可以将否定、析取、合取、蕴含、等价操作构成符合命题。

为了进行一步刻画谓词和个体之间的关系,在谓词逻辑中引入了:全称量词和存在量词

2. 产生式规则

产生式规则常用于表示事实与规则,以及相应的不确定性度量。产生式规则是一种形如“条件-动作”的规则,基本形式如下:IF <条件> Then <结果>

产生式规则与逻辑蕴含有着相同的基本形式,但是在语义上,逻辑蕴含P=>Q只能表达如果命题P为真则Q一定为真。产生式规则后件不仅可以为命题,还可以是动作。

3. 框架

框架表示是以框架理论为基础发展起来的一种结构化的知识表示

框架是一种描述所论对象(事物、时间或概念)属性的数据结构。其基本结构和示例如下图:
在这里插入图片描述

4. 树形知识表示

树形知识表示可以用于表达复杂条件组合下的决策与动作。决策树就是典型的树形知识表示。其根节点和中间节点对应一个属性,相应属性分类的样本集合被划入对应的子节点。叶节点表示最终的分类结果。其例子如下图(a)所示。

另一类常见的树形知识表示是故障树。故障树是一种树形的逻辑因果关系图。在故障树中,父节点是产生故障的结果,也称为输出事件;子节点是产生故障的原因,也称为输入事件。为了能够表达因果逻辑关系,故障树利用逻辑符号(“与”、“或”)连接子节点和父节点。其例子如下图(b)所示。
在这里插入图片描述

5. 概率模型(Probalistic Graphical Model)

贝叶斯网络,也被称为信念网络或者有向无环图模型,是一种概率图模型,也是不确定知识表示的典型方法。一个贝叶斯网络就是一个有向无环图,其中节点是一组随机变量X={X1,X2,…,Xn},节点之间的有向边(由父节点指向子节点)代表随机变量之间的影响。

每个随机变量Xi仅依赖于其父亲节点集Parent(Xi),其例子如下图:
在这里插入图片描述
贝叶斯网络的两个基本问题是学习和推理。学习是指如何从数据中习得最优的贝叶斯网络模型。推理是指给定贝叶斯网络和其中一些随机变量的取值设置,推断其他随机变量分布。

贝叶斯网络的优点

  • 能够准确表达决策过程中的不确定性。
  • 能够有效的将专家的先验知识与数据驱动的学习方法进行融合。

有向概率图模型的简化版本是无向概率图模型,又被称作马尔科夫随机场(Markov Random Field,MRF)

6. 马尔科夫随机链(Markov Chain,MC)

马儿可夫链是一种满足马儿可夫性离散随机变量集合。所谓的马儿可夫性(Markov Property),是指某个随机变量序列的下一个状态仅仅与当前的状态有关,而与之前的状态没有关系。其例子如下图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值