gradle构建的项目结构详解

项目结构如下:

目录结构

.gradle
gradle执行信息

.idea
存放项目的配置信息。这个文件夹是自动生成版本控制信息等,包括历史记录

build
项目输出路径,包括编译后的.class文件(classes文件夹下),资源文件(resourcer文件夹下)

src
项目源码,包含程序源码和测试源码

build.gradle
当前module的gradle配置文件

.settings.gradle
针对module的全局配置,它的作用域所包含的所有module是通过settings.gradle来配置

关键文件

build.gradle:文件包含项目构建所使用的脚本。如:

plugins {
    id 'org.springframework.boot' version '2.1.2.RELEASE'
    id 'java'
}
 
//允许引入该工程去使用的一些插件
apply plugin: 'io.spring.dependency-management'
 
group = 'com.example'
version = '0.0.1-SNAPSHOT'
sourceCompatibility = '1.8'
 
repositories {
    mavenCentral()
}
 
dependencies {
    implementation 'org.springframework.boot:spring-boot-starter'
    testImplementation 'org.springframework.boot:spring-boot-starter-test'
}

settings.gradle:文件将包含必要的一些设置,例如,任务或项目之间的依懒关系等;

pluginManagement {
    repositories {
        gradlePluginPortal()
    }
}
rootProject.name = 'demo'

gradlew:
gradlew.bat:
gradle文件夹:gradle文件中存在着wrapper文件夹(wrapper是包装的意思,他是一个包装类,在wrapper下存在以下两个文件(gradle-wrapper.jar,gradle-wrapper.properties) ;gradle-wrapper.properties文件配置如下:

#Fri Jun 28 13:20:35 CST 2019
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-5.4.1-all.zip

wrapper文件的作用
可以利用它进行安装项目默认的gradle

src文件夹
这个文件夹主要是存放项目的代码文件和项目配置文件,跟maven一样,存在main文件和test文件
在main文件夹下存在着java文件夹和resource文件夹,大家应该会比较熟悉了,就不多说明了。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顺其自然~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值