异构是什么

异构一词源自希腊语,指不同元素组成的性质。在化学中,它涉及同分异构现象;在信息技术中,常用于描述异构网络和数据库系统,特别是异构数据库系统,这类系统允许不同类型的数据库间的数据共享和透明访问。数据转换是实现这一目标的关键,涉及模型转换和可能的数据副本管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

异构(heterogeneous,来自中世纪拉丁文 heterogeneus,来自希腊语 heterogenēs ),即由不同的元素或部分组成,不均匀的意思。

含义

异构是指一种包含不同成分的性质。在不同领域有不同意思。

化学

在化学中,同分异构现象是指具有相同化学式,有同样的化学键而有不同的原子排列的化合物。

异构化是指改变化合物的结构而分子量不变的过程。

信息技术

在信息技术中,异构一词通常用来形容一个包含或者组成“异构网络”的产品。所谓的“异构网络”通常指由不同厂家的产品所组成的网络,且各厂家产品具有互操作性

地质学

地球在许多方面都是一种异质物质。例如通常在微观尺度和小尺度上,从地质学上看,岩石本质上是异构的。

统计学

在统计分析中,研究异构性是指在多项关于效应的研究中,由于受试者人数、干预、分析选择、实验设计等的差异而对实际测量带来不同效果,这可能会导致研究意义的前后矛盾。

医学

在医学和遗传学中,遗传或等位基因异构性病症是指由相同的疾病或病症由若干因素引起或促成的,或者在遗传方面,通过变化的或不同的基因或等位基因引起的。

物理

在物理学中,“异构”应理解为“具有在介质内变化的物理性质”。

社会学

在社会学中,“异构”可以指包括不同种族,文化背景,性别或年龄的个体的社会或群体。

参考:百度百科-验证


其他说明

异构数据库系统是相关的多个数据库系统的集合,可以实现数据的共享和透明访问,每个数据库系统在加入异构数据库系统之前本身就已经存在,拥有自己的DMBS。异构数据库的各个组成部分具有自身的自治性,实现数据共享的同时,每个数据库系统仍保有自己的应用特性、完整性控制和安全性控制。

异构数据库系统的异构性主要体现在以下几个方面:

计算机体系结构的异构

各个参与的数据库可以分别运行在大型机、小型机、工作站、PC或嵌入式系统中。

基础操作系统的异构

各个数据库系统的基础操作系统可以是Unix、Windows NT、 Linux等。

DMBS本身的异构

可以是同为关系型数据库系统的Oracle、 SQL Server等,也可以是不同数据模型的数据库,如关系、模式、层次、网络、面向对象,函数型数据库共同组成一个异构数据库系统。

异构数据库系统的目标在于实现不同数据库之间的数据信息资源、硬件设备资源和人力资源的合并和共享。其中关键的一点就是以局部数据库模式为基础,建立全局的数据模式或全局外视图。这种全局模式对于建立高级的决策支持系统尤为重要。

大型机构在许多地点都有分支机构,每个子机构的数据库中都有着自己的信息数据,而决策制订人员一般只关心宏观的、为全局模式所描述的信息。建立在数据仓库技术基础上的异构数据库全局模式的描述是一种好的解决方案。数据仓库可以从异构数据库系统中的多个数据库中收集信息,并建立统一的全局模式,同时收集的数据还支持对历史数据的访问,用户通过数据仓库提供的统一的数据接口进行决策支持的查询。

数据库转换

对于异构数据库系统,实现数据共享应当达到两点:一是实现数据库转换;二是实现数据的透明访问。由华中科技大学开发的,拥有自主版权的商品化数据库管理系统DM3系统,通过所提供的数据库转换工具和API接口实现了这两点。

DM3提供了数据库转换工具,可以将一种数据库系统中定义的模型转化为另一种数据库中的模型,然后根据需要再装入数据,这时用户就可以利用自己熟悉的数据库系统和熟悉的查询语言,实现数据共享的目标。数据库转换工具首先进行类型转换,访问源数据库系统,将源数据库的数据定义模型转换为目标数据库的数据定义模型,然后进行数据重组,即将源数据库系统中的数据装入到目的数据库中。

在转换的过程中,有时要想实现严格的等价转换是比较困难的。首先要确定两种模型中所存在的各种语法和语义上的冲突,这些冲突可能包括: 命名冲突:即源模型中的标识符可能是目的模型中的保留字,这时就需要重新命名。 格式冲突:同一种数据类型可能有不同的表示方法和语义差异,这时需要定义两种模型之间的变换函数。 结构冲突:如果两种数据库系统之间的数据定义模型不同,如分别为关系模型和层次模型,那么需要重新定义实体属性和联系,以防止属性或联系信息的丢失。

总之,在进行数据转换后,一方面源数据库模式中所有需要共享的信息都转换到目的数据库中,另一方面这种转换又不能包含冗余的关联信息。

数据库转换工具可以实现不同数据库系统之间的数据模型转换,需要进一步研究的问题是:如果数据库转换同时进行数据定义模式转换和数据转换,就可能引起同一数据集合在异构数据库系统中存在多个副本,因此需要引入新的访问控制机制。在保证各个参与数据库自治,维护其完整性、安全性的基础上,对于异构数据库系统提供全局的访问控制、并发机制和安全控制。

如果数据库转换只进行数据定义转换,不产生数据的副本,那么在新的目的数据库定义模型的框架下访问数据,实现上仍是对源数据库系统中数据的访问。这时利用新的数据库系统中的数据处理语言实现的事务,不能直接访问源数据库,必须进行事务级的翻译才可以执行。

数据的透明访问

在异构数据系统中实现了数据的透明访问,用户就可以将异构分布式数据库系统看成普通的分布式数据库系统,用自己熟悉的数据处理语言去访问数据库,如同访问一个数据库系统一样。但目前还没有一种广泛使用的数据定义模型和数据查询语言,实现数据的透明访问可以采用多对一转换、双向的中间件等技术。开放式数据库互连(Open DataBase Connectivity,简称ODBC)是一种用来在相关或不相关的数据库管理系统中存取。 

参考:百度安全验证 

<think>好的,我现在要回答用户的问题:“Python里异构是什么”。首先,我需要明确用户提到的“异构”具体指的是什么。在计算机科学中,“异构”通常指系统中包含不同类型或架构的组件,比如不同的处理器、硬件设备或数据结构。但在Python的上下文中,可能需要更具体的解释。 接下来,我想到Python中的异构可能涉及数据结构。比如,列表(list)可以包含不同类型的元素,如整数、字符串、甚至其他列表,这可以称为异构列表。例如: ```python heterogeneous_list = [1, "hello", 3.14, [1, 2, 3]] ``` 这种情况下,列表中的元素类型各不相同,这就是异构的体现。需要确认用户是否指的是这种情况。 另外,异构计算也是一个可能的方向,涉及到使用不同类型的处理器(如CPU和GPU)协同工作。Python库如NumPy、PyCUDA或TensorFlow可能在这方面发挥作用,但用户的问题可能更基础,需要进一步分析。 还可能涉及数据类型的异构,比如在Pandas中,DataFrame的不同列可以有不同的数据类型,这也是一种异构。例如: ```python import pandas as pd df = pd.DataFrame({ 'int_col': [1, 2, 3], 'str_col': ['a', 'b', 'c'], 'float_col': [0.1, 0.2, 0.3] }) ``` 这种情况下,各列类型不同,属于异构数据。需要判断用户是否指的是数据处理中的异构结构。 此外,分布式系统中的异构系统,可能涉及不同操作系统或硬件,但Python本身作为跨平台语言,可能不是这里的重点。 需要进一步梳理可能的解释,并确定最可能的含义。根据常见用法,数据结构中的异构更常见,比如列表、元组等容器可以包含不同类型元素。而Pandas中的异构列也是常见应用场景。 用户可能是在学习Python数据结构时遇到了“异构”一词,或者在处理数据时遇到了相关问题。因此,重点应放在数据结构的异构性上,并举出实例说明。 总结可能的回答方向: 1. 数据结构的异构性(列表、元组等) 2. 数据处理库中的异构数据(如Pandas) 3. 异构计算(如使用不同硬件加速) 根据用户的问题描述,可能更偏向基础,因此优先解释数据结构中的异构,再简要提及其他可能性。需要确保回答结构清晰,分点说明,并给出示例代码,同时保持语言简洁易懂。</think>在Python中,“异构”通常指数据结构或系统中包含不同**类型**的元素或组件。以下是具体解释: --- ### 1. **异构数据结构**(最常见用法) Python的容器类型(如列表、元组、字典)允许存储**不同类型**的元素,称为“异构性”。 **示例1:异构列表** ```python my_list = [42, "Python", 3.14, True, [1, 2, 3]] # 包含整数、字符串、浮点数、布尔值、子列表 ``` **示例2:异构元组** ```python my_tuple = ("Alice", 30, 165.5) # 包含字符串、整数、浮点数 ``` **示例3:异构字典** ```python my_dict = { "name": "Bob", # 字符串 "age": 25, # 整数 "scores": [90, 85] # 列表 } ``` --- ### 2. **数据处理中的异构性** 在数据分析库(如Pandas)中,**DataFrame的不同列可以有不同的数据类型**,这也是一种异构。 **示例:Pandas的异构DataFrame** ```python import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob'], # 字符串类型 'Age': [25, 30], # 整数类型 'Height': [165.5, 180.0] # 浮点数类型 }) ``` --- ### 3. **异构计算**(高级用法) 指利用**不同类型硬件**(如CPU+GPU/TPU)协同计算。Python通过以下库支持: - **NumPy/CUDA**:CPU与GPU协作 - **TensorFlow/PyTorch**:自动分配计算到不同设备 - **Dask**:分布式异构计算 --- ### 总结 Python中的“异构”主要体现为: 1. **数据结构**:容器存储不同类型元素 2. **数据处理**:表格中不同列类型不同 3. **计算架构**:混合使用不同硬件 根据上下文选择具体含义,最常见的是第一种情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顺其自然~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值