202. Happy Number

本文介绍了一种用于判断一个正整数是否为快乐数的算法。快乐数是指通过反复替换该数为它每个位数的平方和,最终能得到1的数。文章提供了两种实现方式:一种是使用哈希表记录每一步的计算结果来避免重复;另一种是采用龟兔赛跑算法(Floyd判圈算法)来高效检测循环。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目来源【Leetcode

Write an algorithm to determine if a number is “happy”.

A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.

Example: 19 is a happy number
这里写图片描述

这道题就不停的循环,每次都是将每一位的平方相加,直到最后得到的数为1

方法一: 这个是直接按照是否满足条件进行循环

int digsum(int n){
    int re = 0;
    while(n != 0){
       int t = n % 10;
       re += t*t;
       n = n/10;
    }
    return re;
}

class Solution {
public:
    bool isHappy(int n) {
        map<int,int>m;
        while(1){
            int temp = digsum(n);
            if(temp == 1) return true;
            m[temp]++;
            if(m[temp] > 1) return false;
            n = temp;
        }
    }
};

方法二:是用龟兔赛跑算法(Floyd判圈算法),这个效率更快

int digsum(int n){
    int re = 0;
    int t;
    while(n != 0){
       t = n % 10;
       re += t*t;
       n = n/10;
    }
    return re;
}

class Solution {
public:
    bool isHappy(int n) {
        int slow = n;
        int fast = n;
        do{
           slow = digsum(slow);
           fast = digsum(digsum(fast));
        }while(slow != fast);
        if(slow == 1) return true;
        else return false;

    }
};
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值