【题目描述】
偶数 个人站成一个圆,总人数为 num_people 。每个人与除自己外的一个人握手,所以总共会有 num_people / 2 次握手。
将握手的人之间连线,请你返回连线不会相交的握手方案数。
由于结果可能会很大,请你返回答案 模 10^9+7 后的结果。
【示例】
输入:num_people = 2
输出:1
输入:num_people = 4
输出:2
解释:总共有两种方案,第一种方案是 [(1,2),(3,4)] ,第二种方案是 [(2,3),(4,1)] 。
输入:num_people = 6
输出:5
输入:num_people = 8
输出:14
【解题思路】
这是一道动态规划的题,每个n, 我们以最后一个n固定,向其他人握手,这里相当于在两个人之间画条线,然后让剩下的两个部分再去不相交握手,并且必须保持两部分都是偶数个人,那么满足条件的握手只有1,3,5,7…k,所以每次计算公式dp[n] += d[k-1] * dp[n-k-1],然后循环计算即可
【代码】
class Solution {
public:
int numberOfWays(int k) {
if(k == 2) return 1;
vector<long long>dp(k+1, 1);
for(int i = 2; i <= k; i+=2)
{
dp[i] = 0;
for(int j = 1; j < i; j+=2)
{
dp[i] = (dp[i] + (dp[j-1] * dp[i-j-1])%1000000007)%1000000007;
}
}
return dp[k];
}
};