分类决策树

本文通过一个生动的介绍相亲的例子,解释了分类决策树的工作原理。重点讲述了如何构建决策树,特别是ID3算法的核心——选择信息增益最大的特征作为节点,并概述了算法的步骤。最后,提到了决策树的实现代码和后续的内容计划。
摘要由CSDN通过智能技术生成

什么是分类决策树?分类决策树能用来干什么?举个例子就明白了。
一位母亲要给她女儿介绍对象,于是有了如下对话:
女儿:多大年纪了?
母亲:26。
女儿:长的帅不帅?
母亲:挺帅的。
女儿:收入高不?
母亲:不算很高,中等情况。
女儿:是公务员不?
母亲:是,在税务局上班呢。
女儿:那好,我去见见。
这个女孩的决策过程就是典型的分类树决策。通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。
这里写图片描述
现在对机器来说,假设给了它一系列的“前提”(特征),让它对这件事作出判断,这就是分类决策树。说白了,假设有了树,对机器来说,就是不断的if–else–,如果年龄小于30、长的挺帅、收入挺高,机器就知道了,我要去见他。

显然,决策树也是监督学习的一种,先需要历史数据去构建决策树,再可根据决策树去对一些未知数据惊醒分类。
那么,怎么去构建决策树?
再举个例子,表5.1是贷款申请样本数据表,根据年龄、有工作、有房子、信贷情况4个特征来决定是否给你贷款。表格中的数据都是已知的确定的,也就是历史数据,年轻没工作没房子信贷情况一般的人,就一定不给贷款,而青年有工作没房子信贷情况好的人,就一定给贷款…这15种情况是已知的。
我们可以按照上面的情况同样构建一颗树,最开始的节点“年龄”,后有三个分支,“青年”“中年”“老年”,形成三个节点,每个节点后又可以有两个分支,“有工作”“无工作”,总共形成六个节点,“有房子”“无房子”,“信贷好”“信贷一般”…以此类推,最后总共有24种情况,每种情况对应着一种类别“给贷款”“不给贷款”,很显然,这是一种很差的分类方式,完全没有结合数据自身的信息,只是尽数遍历。
怎样去构建一个好的决策树呢?
关键在于选择分类节点的先后顺序。比如有了表5.1的数据,上面我们是选择了“年龄”作为第一个节点,但这是否更有效的?如果我选择“有房子”作为第一个节点,直观上应该更好(因为有房子都给贷款,一下把很多情况都给覆盖了)。
于是我们要根据把类分的更开的特征作为第一个节点,依次往下。也就是说,在根据节点分类之前,总的数据的信息熵一定(在例子中为15条数据),称为经验熵,根据“有房子”这个节点分类后,15条数据变成两类(6条有房子,9条无房子),这两类的熵加起来,称为经验条件熵(在“有无房子”的条件下是否给你贷款),熵代表信息的不确定程度,熵越大,越混乱,信息越不确定。经验熵-经验条件熵的差值称为信息增益,我们要找的“把数据分的更开”的节点,也就是信息增益最大的节点。也就是有了这个节点分类后,这些数据的不确定性最小。
就拿这个例子来讲,什么条件都没有的情况下,15条数据,给不给贷款的不确定性就很大呀,有了第一个节点“有无房子”,分好类之后,显然,假如你有房子,就确定了一定会给你贷款,假如你没有房子,给你贷款也不确定,但总的来说,这两种情况的不确定加起来,还是要远小于原始的15条数据的不确定性。
如果选择“年龄”作为第一个节点分类,假如你是青年,给你贷款不确定;假如你是中年,给你贷款不确定;假如你是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值