非线性-Logistic(逻辑斯特)回归

这篇博客介绍了作者在学习斯坦福大学Andrew Ng的公开课中,对非线性Logistic回归的理解。通过编程作业,作者体验到使用Octave/Matlab进行Logistic回归,特别是探讨了正则化在处理非线性边界时的作用,展示了不同正则化系数(0, 1, 100)对结果的影响,强调了正则化防止过拟合的重要性。" 138510340,23299373,Qt编程:获取硬件信息实战,"['Qt', '硬件信息获取', '操作系统', '网络']
摘要由CSDN通过智能技术生成

关于算法这块,这周看了斯坦福大学Andrew Ng的公开课。还是极力推荐的,每节课10分钟左右,讲的思路清晰,内容丰富,编程作业也很值得去做。(在这里好想吐槽一下国内培训机构七月算法的培训视频呀,根本看不下去。)

上课形式是这样滴

编程作业提交是这样滴

Nice work.每次都是一百分也挺有成就感的。每周的编程作业会有一份非常详细的pdf文档解释

pdf文档是这样滴

上课也挺搞笑的,很愿意听下去。关键是,免费

coursera的地址如下:
https://www.coursera.org/learn/machine-learning/home/week/3

每集的内容我也下载下来了,等全部整理完毕会上传到网盘。有需要请留言。

然后工具就换成了Octave/Matlab,果然还是Matlab用起来比较顺手。

下图分别是用逻辑回归对非线性边界处理的效果,因为非线性,需要将特征组合成多种多项式,扩大特征,这样容易出现过拟合的现象,于是需要正则化。下图分别是正则化系数取0,1,100的效果。取0相当于不正则化。
散点图

lamdba=0,显然出现过拟合(overfitting)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值