关于算法这块,这周看了斯坦福大学Andrew Ng的公开课。还是极力推荐的,每节课10分钟左右,讲的思路清晰,内容丰富,编程作业也很值得去做。(在这里好想吐槽一下国内培训机构七月算法的培训视频呀,根本看不下去。)
上课形式是这样滴
编程作业提交是这样滴
Nice work.每次都是一百分也挺有成就感的。每周的编程作业会有一份非常详细的pdf文档解释
pdf文档是这样滴
上课也挺搞笑的,很愿意听下去。关键是,免费。
coursera的地址如下:
https://www.coursera.org/learn/machine-learning/home/week/3
每集的内容我也下载下来了,等全部整理完毕会上传到网盘。有需要请留言。
然后工具就换成了Octave/Matlab,果然还是Matlab用起来比较顺手。
下图分别是用逻辑回归对非线性边界处理的效果,因为非线性,需要将特征组合成多种多项式,扩大特征,这样容易出现过拟合的现象,于是需要正则化。下图分别是正则化系数取0,1,100的效果。取0相当于不正则化。