LeetCode 2304. 网格中的最小路径代价

原题链接:. - 力扣(LeetCode)

给你一个下标从 0 开始的整数矩阵 grid ,矩阵大小为 m x n ,由从 0 到 m * n - 1 的不同整数组成。你可以在此矩阵中,从一个单元格移动到 下一行 的任何其他单元格。如果你位于单元格 (x, y) ,且满足 x < m - 1 ,你可以移动到 (x + 1, 0)(x + 1, 1), ..., (x + 1, n - 1) 中的任何一个单元格。注意: 在最后一行中的单元格不能触发移动。

每次可能的移动都需要付出对应的代价,代价用一个下标从 0 开始的二维数组 moveCost 表示,该数组大小为 (m * n) x n ,其中 moveCost[i][j] 是从值为 i 的单元格移动到下一行第 j 列单元格的代价。从 grid 最后一行的单元格移动的代价可以忽略。

grid 一条路径的代价是:所有路径经过的单元格的 值之和 加上 所有移动的 代价之和 。从 第一行 任意单元格出发,返回到达 最后一行 任意单元格的最小路径代价

示例 1:

输入:grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]
输出:17
解释:最小代价的路径是 5 -> 0 -> 1 。
- 路径途经单元格值之和 5 + 0 + 1 = 6 。
- 从 5 移动到 0 的代价为 3 。
- 从 0 移动到 1 的代价为 8 。
路径总代价为 6 + 3 + 8 = 17 。

示例 2:

输入:grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]
输出:6
解释:
最小代价的路径是 2 -> 3 。 
- 路径途经单元格值之和 2 + 3 = 5 。 
- 从 2 移动到 3 的代价为 1 。 
路径总代价为 5 + 1 = 6 。

提示:

  • m == grid.length
  • n == grid[i].length
  • 2 <= m, n <= 50
  • grid 由从 0 到 m * n - 1 的不同整数组成
  • moveCost.length == m * n
  • moveCost[i].length == n
  • 1 <= moveCost[i][j] <= 100

思路:

采用递归的思路解决。定义 dfs(grid,i,j,moveCost) 为从 [ i, j ] 出发到达最后一行所需要的最小的代价。对于一个 节点[ i,j ],可以移动第 i +1 行的任一列节点 x[ i+1 ,k ] ,取出 [ i, j ] 到 节点 x 的代价 moveCost[ grid[ i ][ j ]][ k ] 与 节点 x 到最后一行的代价 dfs(grid,i+1,k,moveCost) 的和的最小值 ,再加上节点[ i ,j ] 自身的价值 grid [ i , j ], 即是 从[ i, j ] 到达最后一行所需要的最小的代价值。同时还引入了 memo 数组将已经计算过的节点的最小的代价保存起来,避免重复计算。

代码:

class Solution {
    int[][] memo;
    public int minPathCost(int[][] grid, int[][] moveCost) {
        int m = moveCost.length, n = moveCost[0].length;
        memo = new int[m][n];
        int res = Integer.MAX_VALUE;
        for(int j=0;j<n;j++){
            res = Math.min(res,dfs(grid,0,j,moveCost));
        }
        return res;
    }
    //dfs(grid,i,j,moveCost)返回从[i,j]出发的最小路径代价
    int dfs(int[][] grid,int i,int j,int[][] moveCost){
        //到达递归边界
        if(i== grid.length-1){
            return grid[i][j];
        }
        //从最后一行的任一节点[i,j]出发的最小路径代价是grid[i][j]
        if(memo[i][j] != 0){
            return memo[i][j];
        }
        int res = Integer.MAX_VALUE;
        for(int k=0;k<grid[0].length;k++){
            res = Math.min(res,dfs(grid,i+1,k,moveCost)+ moveCost[grid[i][j]][k]) ;
        }
        return memo[i][j] = res + grid[i][j];
    }
}

参考:. - 力扣(LeetCode)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值