原题链接:. - 力扣(LeetCode)
给你一个下标从 0 开始的整数矩阵 grid
,矩阵大小为 m x n
,由从 0
到 m * n - 1
的不同整数组成。你可以在此矩阵中,从一个单元格移动到 下一行 的任何其他单元格。如果你位于单元格 (x, y)
,且满足 x < m - 1
,你可以移动到 (x + 1, 0)
, (x + 1, 1)
, ..., (x + 1, n - 1)
中的任何一个单元格。注意: 在最后一行中的单元格不能触发移动。
每次可能的移动都需要付出对应的代价,代价用一个下标从 0 开始的二维数组 moveCost
表示,该数组大小为 (m * n) x n
,其中 moveCost[i][j]
是从值为 i
的单元格移动到下一行第 j
列单元格的代价。从 grid
最后一行的单元格移动的代价可以忽略。
grid
一条路径的代价是:所有路径经过的单元格的 值之和 加上 所有移动的 代价之和 。从 第一行 任意单元格出发,返回到达 最后一行 任意单元格的最小路径代价。
示例 1:
输入:grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]] 输出:17 解释:最小代价的路径是 5 -> 0 -> 1 。 - 路径途经单元格值之和 5 + 0 + 1 = 6 。 - 从 5 移动到 0 的代价为 3 。 - 从 0 移动到 1 的代价为 8 。 路径总代价为 6 + 3 + 8 = 17 。
示例 2:
输入:grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]] 输出:6 解释: 最小代价的路径是 2 -> 3 。 - 路径途经单元格值之和 2 + 3 = 5 。 - 从 2 移动到 3 的代价为 1 。 路径总代价为 5 + 1 = 6 。
提示:
m == grid.length
n == grid[i].length
2 <= m, n <= 50
grid
由从0
到m * n - 1
的不同整数组成moveCost.length == m * n
moveCost[i].length == n
1 <= moveCost[i][j] <= 100
思路:
采用递归的思路解决。定义 dfs(grid,i,j,moveCost) 为从 [ i, j ] 出发到达最后一行所需要的最小的代价。对于一个 节点[ i,j ],可以移动第 i +1 行的任一列节点 x[ i+1 ,k ] ,取出 [ i, j ] 到 节点 x 的代价 moveCost[ grid[ i ][ j ]][ k ] 与 节点 x 到最后一行的代价 dfs(grid,i+1,k,moveCost) 的和的最小值 ,再加上节点[ i ,j ] 自身的价值 grid [ i , j ], 即是 从[ i, j ] 到达最后一行所需要的最小的代价值。同时还引入了 memo 数组将已经计算过的节点的最小的代价保存起来,避免重复计算。
代码:
class Solution {
int[][] memo;
public int minPathCost(int[][] grid, int[][] moveCost) {
int m = moveCost.length, n = moveCost[0].length;
memo = new int[m][n];
int res = Integer.MAX_VALUE;
for(int j=0;j<n;j++){
res = Math.min(res,dfs(grid,0,j,moveCost));
}
return res;
}
//dfs(grid,i,j,moveCost)返回从[i,j]出发的最小路径代价
int dfs(int[][] grid,int i,int j,int[][] moveCost){
//到达递归边界
if(i== grid.length-1){
return grid[i][j];
}
//从最后一行的任一节点[i,j]出发的最小路径代价是grid[i][j]
if(memo[i][j] != 0){
return memo[i][j];
}
int res = Integer.MAX_VALUE;
for(int k=0;k<grid[0].length;k++){
res = Math.min(res,dfs(grid,i+1,k,moveCost)+ moveCost[grid[i][j]][k]) ;
}
return memo[i][j] = res + grid[i][j];
}
}