- 博客(137)
- 资源 (2)
- 收藏
- 关注
原创 25秋招Offer 15+,我做对了什么?(第二篇:AI大模型找工作)
2025年AI大模型岗位求职攻略:聚焦工程落地能力。文章指出大模型岗位更看重RAG、Agent开发等应用能力,而非纯算法研究。作者分享了自己的能力构建路径,包括大模型原理、框架应用、RAG全链路实战和Agent开发经验,并整理了一套涵盖原理、项目、面试的完整资料体系。重点强调工程实践能力在求职中的关键作用,建议通过可展示的项目经验提升竞争力。
2025-10-19 22:56:08
676
原创 25秋招Offer 15+,我做对了什么?(第一篇:软件开发找工作)
摘要: 作者分享了秋招斩获15+软件开发Offer的经验,强调系统准备和精准定位的重要性。建议先明确岗位方向(如后端、嵌入式、AI工程化等),再针对性提升技术能力(编程基础、算法、项目深度)。作者整理了一套涵盖算法、系统、面试等的高质量资料包,适合AI工程化/嵌入式方向求职者,付费即可获取。文章指出,秋招成功的关键在于系统性准备和高效利用资源,而非盲目海投。
2025-10-19 22:40:14
639
原创 大模型对话系统设计:实时性与多轮一致性挑战
摘要: 大模型对话系统面临实时性(快速响应)和多轮一致性(上下文连贯)两大核心挑战。实时性可通过模型优化、缓存、硬件加速、分层响应等策略提升;一致性需依赖上下文管理、状态跟踪、指代消解等技术。综合解决方案包括分层架构设计(轻量模型处理简单请求+大模型处理复杂任务)、动态上下文压缩、主动澄清机制及缓存优化。未来需探索更高效的记忆机制、自适应模型调度及多模态融合,以实现更自然的人机交互。
2025-09-14 23:47:01
903
原创 C++ 模板全览:从“非特化”到“全特化 / 偏特化”的完整原理与区别
摘要:C++模板是编译期代码生成器,分为非特化(通用实现)、全特化(针对具体类型完全替换)和偏特化(针对一类类型定制)。非特化作为主模板提供通用配方,全特化优先级最高用于特定类型优化,偏特化则处理一类模式(如指针类型)。所有决策在编译期完成,运行时零开销。模板通过静态代码生成实现多态,与虚函数的动态多态相比无运行时成本。核心机制是编译器根据实参类型按"精确→模式→通用"顺序匹配模板,最终生成普通函数/类。
2025-08-31 17:02:58
524
原创 深度学习量化双雄:PTQ 与 QAT 的技术剖析与实战
《深度学习量化技术:PTQ与QAT的实用指南》 本文系统介绍了FP32模型量化至INT8的两大核心技术。量化可带来4倍的模型压缩与算力提升,主要包括训练后量化(PTQ)和量化感知训练(QAT)两种方案。PTQ无需训练,通过统计权重/激活极值确定量化参数,但精度损失1-3%;QAT在训练中模拟量化误差,精度损失<0.5%,但需额外训练。实践建议:已训练模型用PTQ,精度敏感或新训练模型用QAT。量化参数(scale/zero-point)在推理时作为常量吸收,不增加计算开销。
2025-08-31 15:50:18
399
原创 你本地的智能客服构建:RAGAnything+Agent+Streamlit
本文介绍了一个本地智能客服系统RAG4Chat的开发框架与实现方案。该系统具备多模态交互能力,支持文本/图片对话、人工意图识别、天气查询等功能,并采用RAG技术构建知识库,可批量导入多种格式文档(md/docx/txt/pdf)。项目提供完整的部署指南,包含Streamlit前端和Flask后端两种运行方式,详细说明了API接口规范及请求/响应参数定义。系统通过向量相似度阈值控制知识检索精度,并支持会话历史总结功能,适合构建企业级智能客服解决方案。
2025-08-14 11:26:15
534
原创 Mixture of Experts(MoE):通往高效大模型的钥匙
本文将带你全面理解:MoE 是什么?它如何工作?为什么它能实现“高效扩展”?在大模型、自动驾驶、机器人中的应用实际部署的挑战与未来趋势
2025-07-27 09:30:00
1813
原创 HiggsAudio-V2: 融合语言与声音的下一代音频大模型
Boson AI推出的HiggsAudio-V2是一款创新性音频大模型,其核心突破在于基于Llama-3.2-3B语言模型,通过DualFFN音频适配器架构高效融合音频处理能力。该模型采用Higgs Audio Tokenizer技术,利用残差向量量化和delay pattern实现高质量流式音频生成。实验证明,DualFFN结构在保持91%训练速度的同时,显著提升了语音准确性(WER)和音色相似度(SIM)。这种"语言模型+领域适配器"的架构为多模态AI发展提供了高效范式,支持实时交互
2025-07-26 20:23:49
1546
原创 Self-Attention 是“自己和自己对话”,Cross-Attention 是“向专家请教”
本文用生动比喻解释了 Transformer 中的两种注意力机制: Self-Attention 如同"自己与自己对话",用于理清输入序列内部的逻辑关系(如写作时整理笔记) Cross-Attention 如同"向专家请教",让一个序列查询另一个序列的信息(如咨询专家调整计划) 两种机制协同工作: Self-Attention 确保内部一致性 Cross-Attention 实现跨模态融合 共同构成了AI"内省+外联"的思维模式,使其不仅能处理文本
2025-07-26 11:30:00
1113
原创 用 N 个“未来提问”抄答案:揭秘 Transformer 如何并行生成自动驾驶轨迹
本文揭秘了自动驾驶中基于Transformer的并行轨迹生成技术。该技术通过Learnable Queries(可学习查询)作为"未来提问",结合环境上下文信息,利用Transformer的Cross-Attention机制一次性生成完整轨迹。相比传统串行方法,这种并行方式速度更快(20-50ms内完成)、误差更小,并能实现多模态预测(同时输出多条候选轨迹)。文章详细解析了其核心架构、实现原理及优势,并指出该技术已被Tesla、Waymo等厂商广泛应用。这种"感知-理解-预测&
2025-07-26 09:00:00
1537
原创 QKV 为什么是三个矩阵?注意力为何要除以 √d?多头注意力到底有啥用?
本文深入解析Transformer中的Self-Attention机制,探讨了三个关键设计问题。首先,QKV三个矩阵分离是为了区分查询、索引和内容传递的不同功能;其次,除以√d_k是为了稳定点积方差,防止梯度消失;最后,多头注意力通过并行学习不同关注模式提升模型表达能力。文章从数学推导和工程实践角度,揭示了这些设计背后的深意,并指出这些原则仍是现代AI的重要基石。
2025-07-25 19:14:13
1425
原创 统一的注意力机制:为什么 VLA 和 Diffusion 轨迹生成“长得这么像”?
摘要:跨领域AI架构的统一性——VLA与扩散模型的相似性分析 近年来,机器人、自动驾驶和生成式AI领域出现了一个有趣的现象:视觉语言动作模型(VLA)与扩散模型在轨迹生成任务中展现出高度相似的架构,均采用Encoder-Decoder框架与Cross-Attention机制。 核心共性: Cross-Attention驱动条件生成:两类模型均通过Query动态查询感知上下文(Key-Value),实现环境信息与决策的融合。 统一架构模式:输入→编码上下文→Decoder通过Cross-Attention生成
2025-07-25 18:40:49
1171
原创 [特殊字符] VLA 如何“绕过”手眼标定?—— 当机器人学会了“看一眼就动手”
VLA模型:从“手眼标定”到“看一眼就动手”的范式跃迁 传统机器人依赖精确的手眼标定来建立视觉与动作的几何关系,而新兴的VLA(Vision-Language-Action)模型通过端到端学习实现了“隐式标定”。VLA直接根据图像和自然语言指令输出动作轨迹,省去了显式的坐标变换过程。其核心在于通过海量训练数据内化空间关系映射,类似人类直觉式操作。这种范式虽带来部署简便、交互自然等优势,但也面临硬件固定依赖、数据需求高、可解释性差等挑战。未来发展方向可能是结合VLA语义理解与传统几何精度的混合架构。
2025-07-25 18:31:11
1163
原创 图像任务中的并发处理:线程池、Ray、Celery 和 asyncio 的比较
本文对比了五种图像缺陷检测中的并发处理方法:线程池(ThreadPoolExecutor)通过线程复用降低开销;Ray支持分布式计算,适合大规模任务;Celery基于消息队列实现任务调度;asyncio针对I/O密集型任务优化;搜狗Workflow采用多维调度处理海量请求。五种方法各有侧重:线程池简单易用但资源占用高;Ray和Celery适合分布式环境但配置复杂;asyncio轻量但仅限I/O任务;Workflow专为高并发设计。选择时需权衡任务类型、系统规模和开发成本,I/O任务优先asyncio,大规模
2025-06-02 21:23:43
1191
1
原创 机器学习模型:逻辑回归、决策树、随机森林和 XGBoost
摘要:本文探讨了四种机器学习模型(逻辑回归、决策树、随机森林、XGBoost)在学校足球队员选拔中的应用。逻辑回归适合线性可分数据,决策树直观但易过拟合,随机森林通过多树集成提高稳定性,XGBoost则通过顺序构建优化精度。文章详细比较了这些模型的原理、结构和实现过程,并指出随机森林与XGBoost的关键差异在于训练方式(并行vs顺序)和过拟合控制方法(随机性vs正则化)。模型选择需综合考虑数据特征、精度需求和计算资源,为体育人才选拔提供智能化解决方案。
2025-05-30 10:15:00
1106
原创 程序调试实战:正向追踪与逆向回溯的巧妙应用
摘要:在图像与点云处理项目中遇到测量数据不准确的问题时,采用正向追踪和逆向回溯相结合的调试策略。正向追踪从输入数据到目标检测、映射过程逐步验证;逆向回溯则从测量结果反推问题根源。最终发现目标检测参数设置不当和边缘映射精度不足是主因,通过优化参数和算法改进解决了问题。调试需要洞察力、逻辑思维和多角度分析的能力,是提升开发技能的重要实践。(149字)
2025-05-29 11:00:00
1124
原创 C++ 异步编程与网络编程:工具、协议的层次与协同
本文深入探讨了C++异步编程和网络编程两大核心技术。在异步编程方面,分析了std::thread、std::async等线程管理工具,以及std::future/std::promise等任务结果传递机制,并介绍了C++20新增的std::jthread安全线程管理。在网络编程方面,详细解析了Socket、TCP/IP协议、HTTP GET/POST方法等基础概念,并通过代码示例展示了网络通信的实现方式。文章展现了异步编程与网络编程的层次关系与协同工作机制,为开发者构建高性能网络应用提供了技术指导。
2025-05-28 10:22:58
985
原创 深度学习面试八股简略速览
本文为深度学习面试提供全面指南,涵盖基础理论到实际应用。第一部分讲解神经网络核心概念,包括激活函数和常见网络架构(CNN、RNN、Transformer)。第二部分介绍优化算法(SGD、Adam)和数据处理技巧(数据增强、预处理)。第三部分讨论模型训练与评估,包括过拟合解决方法及评价指标。第四部分对比主流框架TensorFlow和PyTorch。第五部分涉及模型优化方法和部署方案。第六部分详解损失函数类型及适用场景,并介绍卷积操作的多种实现方式。最后补充批量归一化、Dropout等关键概念
2025-05-25 17:11:18
1266
原创 Python 中的多线程与多进程:真假并行的直观对比
本文探讨了 Python 中多线程和多进程的并发编程方式,重点分析了它们的优缺点及适用场景。由于 Python 的全局解释器锁(GIL),多线程在 CPU 密集型任务中无法实现真正的并行计算,但在 I/O 密集型任务中表现良好。多进程则通过创建独立进程绕过 GIL,适合 CPU 密集型任务,但内存占用较高。文章通过示例代码展示了多线程和多进程在不同任务中的性能差异,并提供了选择并发模型的建议:I/O 密集型任务优先使用多线程,CPU 密集型任务优先使用多进程,复杂任务可结合两者。合理选择并发模型有助于提高程
2025-05-23 10:00:00
821
原创 解决 Python 项目中多个不同位置不同版本 `ultralytics` 模块冲突的实用技巧
在开发大型Python项目时,模块命名冲突是常见问题,尤其是当根目录和子文件夹中存在同名模块时。本文介绍了一种通过动态调整sys.path来解决模块冲突的方法。sys.path是Python解释器搜索模块的路径列表,默认优先加载根目录下的模块。通过在子文件夹的脚本中调整sys.path,将子文件夹路径插入到列表最前面,可以确保优先加载子文件夹中的模块。具体步骤包括获取当前脚本目录、构建子文件夹模块路径、调整sys.path并验证导入的模块。此方法简单有效,但需注意路径拼接的灵活性、避免全局影响以及与其他解决
2025-05-22 10:36:36
827
原创 数据集划分与格式转换:从原始数据到模型训练的关键步骤
本文介绍了在计算机视觉项目中如何合理划分数据集并进行格式转换。首先,通过Python代码将图片和标注数据按比例切分为训练集和测试集,代码中定义了路径、划分比例,并实现了目录的清理与创建、随机抽样以及文件复制等功能。其次,文章还介绍了如何将JSON格式的标注数据转换为YOLO格式,包括读取JSON文件、获取图像尺寸、映射类别标签,并将转换后的数据保存为TXT文件。这些步骤为高效模型训练提供了基础支持。
2025-05-20 16:29:47
546
原创 树形结构全解析:从平衡二叉树到多维空间数据结构
本文详细介绍了多种常见的数据结构,包括平衡二叉树(如红黑树、AVL树)、B树、B+树以及多维空间数据结构(如KD树、R树、四叉树、八叉树、球树),并比较了它们的特点、优点和应用场景。平衡二叉树和B树主要用于一维数据的高效查询和动态操作,而多维空间数据结构则通过空间划分来加速多维数据的查询。文章通过表格和示例代码直观展示了这些数据结构的差异,帮助读者更好地理解它们之间的关系和区别,从而选择合适的数据结构以提高数据处理的效率和性能。
2025-05-11 09:00:00
1196
原创 KD树:解锁多维空间数据的高效检索
KD树(K-Dimensional Tree)是一种高效的多维空间数据结构,广泛应用于空间数据的查询和操作。其核心原理是通过递归划分空间,选择中位数作为节点,构建平衡的树结构,从而加速最近邻查询和范围查询等操作。KD树在处理大规模点云数据、图像处理和机器学习等领域表现出色,显著降低了计算复杂度。通过实际代码示例,本文展示了KD树在点云配准中的应用,进一步说明了其在实际场景中的强大功能。KD树的高效性和灵活性使其成为处理多维空间数据的理想选择。
2025-05-10 09:00:00
1095
原创 深入解析磁盘 I/O 与零拷贝技术:从传统读取到高效传输
本文深入探讨了磁盘 I/O 的传统实现方式及其性能瓶颈,并介绍了零拷贝技术如何通过减少数据拷贝来优化 I/O 操作。传统的 read() 和 write() 系统调用涉及多次数据拷贝,导致性能开销。零拷贝技术如内存映射、sendfile、DMA 和用户态文件系统,通过直接共享数据或减少拷贝次数,显著提升了 I/O 效率。文章还通过代码示例对比了传统读取方式和内存映射方式的性能差异,指出零拷贝技术在大文件传输、高吞吐量网络应用和高性能计算中的优势。尽管零拷贝技术提高了性能,但其实现复杂性和兼容性等问题也需谨慎
2025-05-09 13:12:17
737
原创 C++ 中的 `it->second` 和 `it.second`:迭代器与对象访问的微妙区别
在 C++ 中,迭代器和对象访问的语法取决于it如果it是一个指针类型的迭代器(例如),那么可以使用it->second。如果it是一个对象(例如pair的引用),那么必须使用it.second。在实际编程中,我们通常使用auto关键字来推导it的类型。如果你不确定it的类型,可以通过查看编译器的错误信息或使用typeid来确认。希望这篇文章能帮助你更好地理解 C++ 中的迭代器和对象访问机制。如果你还有其他问题,欢迎在评论区留言讨论!
2025-05-07 19:10:35
1220
原创 yolo训练集中有多个种类的的标签但训练时只有一类标签,修改single_cls没有用的解决方法
但是仍然没有解决问题,出现了其他标签,但是其他的数量还是为0,最后排查发现single_cls= true的时候把train和val的标签加载到内存中了cache,没有删除掉。在修改single_cls= False仍然使用的的train.cache和val.cache,导致标签仍然只剩下0,其他标签没有。明明数据集中有三类标签,但训练时发现总是变为一类标签,检查了好几遍数据集没发现问题,后来发现yolo中有一个超参数。解决方法:删除掉train.cache和val.cache,就可以了。
2025-05-05 12:55:55
658
原创 多线程环境下的资源共享与线程安全问题
在多线程环境中,资源共享和线程安全是一个重要的问题。我们尝试了多种方法,包括每个线程创建独立实例、使用锁保护共享资源和使用线程局部存储。最终,我们选择了使用锁的方法,因为它在性能和线程安全之间取得了较好的平衡。希望这些经验能对你有所帮助!
2025-04-24 19:10:35
549
原创 深入解析 C++ STL 中的插入操作:`push_back`、`emplace_back`、`insert`、`push_front` 和 `std::move`
通过合理使用这些插入操作,可以提高代码的效率和可读性。push_back:在容器末尾插入一个元素,适用于和std::deque。:在容器末尾原地构造一个元素,适用于和std::deque,避免不必要的拷贝或移动。insert:在指定位置插入一个或多个元素,适用于std::dequestd::list和std::map。push_front:在容器头部插入一个元素,适用于std::list和std::deque。push:在容器顶部或尾部插入一个元素,适用于std::stack和std::queue。
2025-04-02 09:00:00
1318
原创 解决 LRU 缓存中的“堆使用后释放”问题
通过这次经历,我深刻认识到在使用list和时,必须确保迭代器的有效性。在修改list的内容后,要及时更新中的迭代器,避免访问已释放的内存。同时,我也学会了如何使用 AddressSanitizer 来检测内存问题,这对我今后的开发工作非常有帮助。希望这篇文章能帮助到遇到类似问题的开发者。
2025-03-31 15:48:11
715
中文译文:工业混合喷涂机器人的精确动态建模与控制参数设计
2023-08-30
现代机器人YS080L机械臂SolidWorks模型
2023-08-30
毕业设计之文献综述开题报告毕业论文写作模板.zip
2023-04-26
英文文献基于遗传算法的工业机器人最优时间轨迹规划的译文
2023-04-23
YOLOv7论文:可训练的免费包为实时物体检测器设置了新的最先进的技术
2023-04-23
城市轨道交通结课论文-《轨道交通上5G与车-车通信技术的研究》
2023-03-16
人工智能与自动驾驶结课论文+自动驾驶的传感器及数据融合
2023-03-16
卫星通信总复习题考试期末突击必备
2023-01-09
卫星通信总复习提纲,包含所有基本知识点
2023-01-09
微信小程序——停车位预约、可导航、可选位
2022-08-09
YOLOv7识别的MAP
2023-03-06
ROS数据集判断相机类型
2023-03-06
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅