自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(137)
  • 资源 (2)
  • 收藏
  • 关注

原创 25秋招Offer 15+,我做对了什么?(第二篇:AI大模型找工作)

2025年AI大模型岗位求职攻略:聚焦工程落地能力。文章指出大模型岗位更看重RAG、Agent开发等应用能力,而非纯算法研究。作者分享了自己的能力构建路径,包括大模型原理、框架应用、RAG全链路实战和Agent开发经验,并整理了一套涵盖原理、项目、面试的完整资料体系。重点强调工程实践能力在求职中的关键作用,建议通过可展示的项目经验提升竞争力。

2025-10-19 22:56:08 676

原创 25秋招Offer 15+,我做对了什么?(第一篇:软件开发找工作)

摘要: 作者分享了秋招斩获15+软件开发Offer的经验,强调系统准备和精准定位的重要性。建议先明确岗位方向(如后端、嵌入式、AI工程化等),再针对性提升技术能力(编程基础、算法、项目深度)。作者整理了一套涵盖算法、系统、面试等的高质量资料包,适合AI工程化/嵌入式方向求职者,付费即可获取。文章指出,秋招成功的关键在于系统性准备和高效利用资源,而非盲目海投。

2025-10-19 22:40:14 639

原创 大模型对话系统设计:实时性与多轮一致性挑战

摘要: 大模型对话系统面临实时性(快速响应)和多轮一致性(上下文连贯)两大核心挑战。实时性可通过模型优化、缓存、硬件加速、分层响应等策略提升;一致性需依赖上下文管理、状态跟踪、指代消解等技术。综合解决方案包括分层架构设计(轻量模型处理简单请求+大模型处理复杂任务)、动态上下文压缩、主动澄清机制及缓存优化。未来需探索更高效的记忆机制、自适应模型调度及多模态融合,以实现更自然的人机交互。

2025-09-14 23:47:01 903

原创 C++ 模板全览:从“非特化”到“全特化 / 偏特化”的完整原理与区别

摘要:C++模板是编译期代码生成器,分为非特化(通用实现)、全特化(针对具体类型完全替换)和偏特化(针对一类类型定制)。非特化作为主模板提供通用配方,全特化优先级最高用于特定类型优化,偏特化则处理一类模式(如指针类型)。所有决策在编译期完成,运行时零开销。模板通过静态代码生成实现多态,与虚函数的动态多态相比无运行时成本。核心机制是编译器根据实参类型按"精确→模式→通用"顺序匹配模板,最终生成普通函数/类。

2025-08-31 17:02:58 524

原创 深度学习量化双雄:PTQ 与 QAT 的技术剖析与实战

《深度学习量化技术:PTQ与QAT的实用指南》 本文系统介绍了FP32模型量化至INT8的两大核心技术。量化可带来4倍的模型压缩与算力提升,主要包括训练后量化(PTQ)和量化感知训练(QAT)两种方案。PTQ无需训练,通过统计权重/激活极值确定量化参数,但精度损失1-3%;QAT在训练中模拟量化误差,精度损失<0.5%,但需额外训练。实践建议:已训练模型用PTQ,精度敏感或新训练模型用QAT。量化参数(scale/zero-point)在推理时作为常量吸收,不增加计算开销。

2025-08-31 15:50:18 399

原创 你本地的智能客服构建:RAGAnything+Agent+Streamlit

本文介绍了一个本地智能客服系统RAG4Chat的开发框架与实现方案。该系统具备多模态交互能力,支持文本/图片对话、人工意图识别、天气查询等功能,并采用RAG技术构建知识库,可批量导入多种格式文档(md/docx/txt/pdf)。项目提供完整的部署指南,包含Streamlit前端和Flask后端两种运行方式,详细说明了API接口规范及请求/响应参数定义。系统通过向量相似度阈值控制知识检索精度,并支持会话历史总结功能,适合构建企业级智能客服解决方案。

2025-08-14 11:26:15 534

原创 Mixture of Experts(MoE):通往高效大模型的钥匙

本文将带你全面理解:MoE 是什么?它如何工作?为什么它能实现“高效扩展”?在大模型、自动驾驶、机器人中的应用实际部署的挑战与未来趋势

2025-07-27 09:30:00 1813

原创 HiggsAudio-V2: 融合语言与声音的下一代音频大模型

Boson AI推出的HiggsAudio-V2是一款创新性音频大模型,其核心突破在于基于Llama-3.2-3B语言模型,通过DualFFN音频适配器架构高效融合音频处理能力。该模型采用Higgs Audio Tokenizer技术,利用残差向量量化和delay pattern实现高质量流式音频生成。实验证明,DualFFN结构在保持91%训练速度的同时,显著提升了语音准确性(WER)和音色相似度(SIM)。这种"语言模型+领域适配器"的架构为多模态AI发展提供了高效范式,支持实时交互

2025-07-26 20:23:49 1546

原创 Self-Attention 是“自己和自己对话”,Cross-Attention 是“向专家请教”

本文用生动比喻解释了 Transformer 中的两种注意力机制: Self-Attention 如同"自己与自己对话",用于理清输入序列内部的逻辑关系(如写作时整理笔记) Cross-Attention 如同"向专家请教",让一个序列查询另一个序列的信息(如咨询专家调整计划) 两种机制协同工作: Self-Attention 确保内部一致性 Cross-Attention 实现跨模态融合 共同构成了AI"内省+外联"的思维模式,使其不仅能处理文本

2025-07-26 11:30:00 1113

原创 用 N 个“未来提问”抄答案:揭秘 Transformer 如何并行生成自动驾驶轨迹

本文揭秘了自动驾驶中基于Transformer的并行轨迹生成技术。该技术通过Learnable Queries(可学习查询)作为"未来提问",结合环境上下文信息,利用Transformer的Cross-Attention机制一次性生成完整轨迹。相比传统串行方法,这种并行方式速度更快(20-50ms内完成)、误差更小,并能实现多模态预测(同时输出多条候选轨迹)。文章详细解析了其核心架构、实现原理及优势,并指出该技术已被Tesla、Waymo等厂商广泛应用。这种"感知-理解-预测&

2025-07-26 09:00:00 1537

原创 QKV 为什么是三个矩阵?注意力为何要除以 √d?多头注意力到底有啥用?

本文深入解析Transformer中的Self-Attention机制,探讨了三个关键设计问题。首先,QKV三个矩阵分离是为了区分查询、索引和内容传递的不同功能;其次,除以√d_k是为了稳定点积方差,防止梯度消失;最后,多头注意力通过并行学习不同关注模式提升模型表达能力。文章从数学推导和工程实践角度,揭示了这些设计背后的深意,并指出这些原则仍是现代AI的重要基石。

2025-07-25 19:14:13 1425

原创 统一的注意力机制:为什么 VLA 和 Diffusion 轨迹生成“长得这么像”?

摘要:跨领域AI架构的统一性——VLA与扩散模型的相似性分析 近年来,机器人、自动驾驶和生成式AI领域出现了一个有趣的现象:视觉语言动作模型(VLA)与扩散模型在轨迹生成任务中展现出高度相似的架构,均采用Encoder-Decoder框架与Cross-Attention机制。 核心共性: Cross-Attention驱动条件生成:两类模型均通过Query动态查询感知上下文(Key-Value),实现环境信息与决策的融合。 统一架构模式:输入→编码上下文→Decoder通过Cross-Attention生成

2025-07-25 18:40:49 1171

原创 [特殊字符] VLA 如何“绕过”手眼标定?—— 当机器人学会了“看一眼就动手”

VLA模型:从“手眼标定”到“看一眼就动手”的范式跃迁 传统机器人依赖精确的手眼标定来建立视觉与动作的几何关系,而新兴的VLA(Vision-Language-Action)模型通过端到端学习实现了“隐式标定”。VLA直接根据图像和自然语言指令输出动作轨迹,省去了显式的坐标变换过程。其核心在于通过海量训练数据内化空间关系映射,类似人类直觉式操作。这种范式虽带来部署简便、交互自然等优势,但也面临硬件固定依赖、数据需求高、可解释性差等挑战。未来发展方向可能是结合VLA语义理解与传统几何精度的混合架构。

2025-07-25 18:31:11 1163

原创 图像任务中的并发处理:线程池、Ray、Celery 和 asyncio 的比较

本文对比了五种图像缺陷检测中的并发处理方法:线程池(ThreadPoolExecutor)通过线程复用降低开销;Ray支持分布式计算,适合大规模任务;Celery基于消息队列实现任务调度;asyncio针对I/O密集型任务优化;搜狗Workflow采用多维调度处理海量请求。五种方法各有侧重:线程池简单易用但资源占用高;Ray和Celery适合分布式环境但配置复杂;asyncio轻量但仅限I/O任务;Workflow专为高并发设计。选择时需权衡任务类型、系统规模和开发成本,I/O任务优先asyncio,大规模

2025-06-02 21:23:43 1191 1

原创 机器学习模型:逻辑回归、决策树、随机森林和 XGBoost

摘要:本文探讨了四种机器学习模型(逻辑回归、决策树、随机森林、XGBoost)在学校足球队员选拔中的应用。逻辑回归适合线性可分数据,决策树直观但易过拟合,随机森林通过多树集成提高稳定性,XGBoost则通过顺序构建优化精度。文章详细比较了这些模型的原理、结构和实现过程,并指出随机森林与XGBoost的关键差异在于训练方式(并行vs顺序)和过拟合控制方法(随机性vs正则化)。模型选择需综合考虑数据特征、精度需求和计算资源,为体育人才选拔提供智能化解决方案。

2025-05-30 10:15:00 1106

原创 程序调试实战:正向追踪与逆向回溯的巧妙应用

摘要:在图像与点云处理项目中遇到测量数据不准确的问题时,采用正向追踪和逆向回溯相结合的调试策略。正向追踪从输入数据到目标检测、映射过程逐步验证;逆向回溯则从测量结果反推问题根源。最终发现目标检测参数设置不当和边缘映射精度不足是主因,通过优化参数和算法改进解决了问题。调试需要洞察力、逻辑思维和多角度分析的能力,是提升开发技能的重要实践。(149字)

2025-05-29 11:00:00 1124

原创 C++ 异步编程与网络编程:工具、协议的层次与协同

本文深入探讨了C++异步编程和网络编程两大核心技术。在异步编程方面,分析了std::thread、std::async等线程管理工具,以及std::future/std::promise等任务结果传递机制,并介绍了C++20新增的std::jthread安全线程管理。在网络编程方面,详细解析了Socket、TCP/IP协议、HTTP GET/POST方法等基础概念,并通过代码示例展示了网络通信的实现方式。文章展现了异步编程与网络编程的层次关系与协同工作机制,为开发者构建高性能网络应用提供了技术指导。

2025-05-28 10:22:58 985

原创 深度学习面试八股简略速览

本文为深度学习面试提供全面指南,涵盖基础理论到实际应用。第一部分讲解神经网络核心概念,包括激活函数和常见网络架构(CNN、RNN、Transformer)。第二部分介绍优化算法(SGD、Adam)和数据处理技巧(数据增强、预处理)。第三部分讨论模型训练与评估,包括过拟合解决方法及评价指标。第四部分对比主流框架TensorFlow和PyTorch。第五部分涉及模型优化方法和部署方案。第六部分详解损失函数类型及适用场景,并介绍卷积操作的多种实现方式。最后补充批量归一化、Dropout等关键概念

2025-05-25 17:11:18 1266

原创 Python 中的多线程与多进程:真假并行的直观对比

本文探讨了 Python 中多线程和多进程的并发编程方式,重点分析了它们的优缺点及适用场景。由于 Python 的全局解释器锁(GIL),多线程在 CPU 密集型任务中无法实现真正的并行计算,但在 I/O 密集型任务中表现良好。多进程则通过创建独立进程绕过 GIL,适合 CPU 密集型任务,但内存占用较高。文章通过示例代码展示了多线程和多进程在不同任务中的性能差异,并提供了选择并发模型的建议:I/O 密集型任务优先使用多线程,CPU 密集型任务优先使用多进程,复杂任务可结合两者。合理选择并发模型有助于提高程

2025-05-23 10:00:00 821

原创 解决 Python 项目中多个不同位置不同版本 `ultralytics` 模块冲突的实用技巧

在开发大型Python项目时,模块命名冲突是常见问题,尤其是当根目录和子文件夹中存在同名模块时。本文介绍了一种通过动态调整sys.path来解决模块冲突的方法。sys.path是Python解释器搜索模块的路径列表,默认优先加载根目录下的模块。通过在子文件夹的脚本中调整sys.path,将子文件夹路径插入到列表最前面,可以确保优先加载子文件夹中的模块。具体步骤包括获取当前脚本目录、构建子文件夹模块路径、调整sys.path并验证导入的模块。此方法简单有效,但需注意路径拼接的灵活性、避免全局影响以及与其他解决

2025-05-22 10:36:36 827

原创 数据集划分与格式转换:从原始数据到模型训练的关键步骤

本文介绍了在计算机视觉项目中如何合理划分数据集并进行格式转换。首先,通过Python代码将图片和标注数据按比例切分为训练集和测试集,代码中定义了路径、划分比例,并实现了目录的清理与创建、随机抽样以及文件复制等功能。其次,文章还介绍了如何将JSON格式的标注数据转换为YOLO格式,包括读取JSON文件、获取图像尺寸、映射类别标签,并将转换后的数据保存为TXT文件。这些步骤为高效模型训练提供了基础支持。

2025-05-20 16:29:47 546

原创 树形结构全解析:从平衡二叉树到多维空间数据结构

本文详细介绍了多种常见的数据结构,包括平衡二叉树(如红黑树、AVL树)、B树、B+树以及多维空间数据结构(如KD树、R树、四叉树、八叉树、球树),并比较了它们的特点、优点和应用场景。平衡二叉树和B树主要用于一维数据的高效查询和动态操作,而多维空间数据结构则通过空间划分来加速多维数据的查询。文章通过表格和示例代码直观展示了这些数据结构的差异,帮助读者更好地理解它们之间的关系和区别,从而选择合适的数据结构以提高数据处理的效率和性能。

2025-05-11 09:00:00 1196

原创 KD树:解锁多维空间数据的高效检索

KD树(K-Dimensional Tree)是一种高效的多维空间数据结构,广泛应用于空间数据的查询和操作。其核心原理是通过递归划分空间,选择中位数作为节点,构建平衡的树结构,从而加速最近邻查询和范围查询等操作。KD树在处理大规模点云数据、图像处理和机器学习等领域表现出色,显著降低了计算复杂度。通过实际代码示例,本文展示了KD树在点云配准中的应用,进一步说明了其在实际场景中的强大功能。KD树的高效性和灵活性使其成为处理多维空间数据的理想选择。

2025-05-10 09:00:00 1095

原创 深入解析磁盘 I/O 与零拷贝技术:从传统读取到高效传输

本文深入探讨了磁盘 I/O 的传统实现方式及其性能瓶颈,并介绍了零拷贝技术如何通过减少数据拷贝来优化 I/O 操作。传统的 read() 和 write() 系统调用涉及多次数据拷贝,导致性能开销。零拷贝技术如内存映射、sendfile、DMA 和用户态文件系统,通过直接共享数据或减少拷贝次数,显著提升了 I/O 效率。文章还通过代码示例对比了传统读取方式和内存映射方式的性能差异,指出零拷贝技术在大文件传输、高吞吐量网络应用和高性能计算中的优势。尽管零拷贝技术提高了性能,但其实现复杂性和兼容性等问题也需谨慎

2025-05-09 13:12:17 737

原创 C++ 中的 `it->second` 和 `it.second`:迭代器与对象访问的微妙区别

在 C++ 中,迭代器和对象访问的语法取决于it如果it是一个指针类型的迭代器(例如),那么可以使用it->second。如果it是一个对象(例如pair的引用),那么必须使用it.second。在实际编程中,我们通常使用auto关键字来推导it的类型。如果你不确定it的类型,可以通过查看编译器的错误信息或使用typeid来确认。希望这篇文章能帮助你更好地理解 C++ 中的迭代器和对象访问机制。如果你还有其他问题,欢迎在评论区留言讨论!

2025-05-07 19:10:35 1220

原创 yolo训练集中有多个种类的的标签但训练时只有一类标签,修改single_cls没有用的解决方法

但是仍然没有解决问题,出现了其他标签,但是其他的数量还是为0,最后排查发现single_cls= true的时候把train和val的标签加载到内存中了cache,没有删除掉。在修改single_cls= False仍然使用的的train.cache和val.cache,导致标签仍然只剩下0,其他标签没有。明明数据集中有三类标签,但训练时发现总是变为一类标签,检查了好几遍数据集没发现问题,后来发现yolo中有一个超参数。解决方法:删除掉train.cache和val.cache,就可以了。

2025-05-05 12:55:55 658

原创 多线程环境下的资源共享与线程安全问题

在多线程环境中,资源共享和线程安全是一个重要的问题。我们尝试了多种方法,包括每个线程创建独立实例、使用锁保护共享资源和使用线程局部存储。最终,我们选择了使用锁的方法,因为它在性能和线程安全之间取得了较好的平衡。希望这些经验能对你有所帮助!

2025-04-24 19:10:35 549

原创 力扣hot100 91-100记录

【代码】力扣hot100 91-100记录。

2025-04-24 18:59:12 347

原创 力扣hot100 81-90记录

【代码】力扣hot100 81-90记录。动态规划

2025-04-10 15:17:56 225

原创 力扣hot100 71-80记录

【代码】力扣hot100 71-80记录。

2025-04-07 21:15:42 306

原创 力扣hot100 61-70记录

【代码】力扣hot100 61-70记录

2025-04-05 22:03:58 276

原创 力扣hot100 51-60记录

【代码】力扣hot100 51-60记录。

2025-04-02 15:07:43 296

原创 深入解析 C++ STL 中的插入操作:`push_back`、`emplace_back`、`insert`、`push_front` 和 `std::move`

通过合理使用这些插入操作,可以提高代码的效率和可读性。push_back:在容器末尾插入一个元素,适用于和std::deque。:在容器末尾原地构造一个元素,适用于和std::deque,避免不必要的拷贝或移动。insert:在指定位置插入一个或多个元素,适用于std::dequestd::list和std::map。push_front:在容器头部插入一个元素,适用于std::list和std::deque。push:在容器顶部或尾部插入一个元素,适用于std::stack和std::queue。

2025-04-02 09:00:00 1318

原创 力扣hot100 41-50记录

【代码】力扣hot100 41-50记录。

2025-04-01 14:41:09 251

原创 力扣hot100 31-40记录

【代码】力扣hot100 31-40记录。

2025-03-31 17:02:43 318

原创 解决 LRU 缓存中的“堆使用后释放”问题

通过这次经历,我深刻认识到在使用list和时,必须确保迭代器的有效性。在修改list的内容后,要及时更新中的迭代器,避免访问已释放的内存。同时,我也学会了如何使用 AddressSanitizer 来检测内存问题,这对我今后的开发工作非常有帮助。希望这篇文章能帮助到遇到类似问题的开发者。

2025-03-31 15:48:11 715

原创 力扣hot100 21-30记录

【代码】力扣hot100 21-30记录。

2025-03-30 16:44:01 282

原创 力扣hot100 11-20记录

【代码】力扣hot100 11-20记录。

2025-03-28 17:19:32 356

原创 力扣hot100 1-10记录

【代码】力扣hot100 1-10记录。

2025-03-27 22:14:44 255

原创 递归和动态规划解整数分解为字符串的问题

DO和DO1是递归的解法,DO1是DO的剪枝。DO3是动态规划的解法。

2025-03-20 21:40:56 170

中文译文:工业混合喷涂机器人的精确动态建模与控制参数设计

英文原文名称:Accurate dynamic modeling and control parameters design of an industrial hybrid spray-painting robot 中文译文:工业混合喷涂机器人的精确动态建模与控制参数设计 摘要:为了提高混合机器人在非线性动力学和摩擦下的性能,工业机器人领域已广泛应用前馈补偿。然而,由于混合动力机器人摩擦模型复杂、耦合性强、动态时变等原因,目前在工业控制系统中还没有实现精确前馈补偿的有效方法。本文研究了一种精确的动态建模和控制参数设计方法,用以解决这些问题。考虑到每个关节的摩擦,开发了混合机器人的精确动力学模型并通过实验验证。在精确动态模型的基础上,提出了一种基于动态模型与前馈补偿之间映射关系的精确控制参数设计方法。此外,本文将提出的方法设计的控制系统与经验丰富的工程师调整的控制系统进行了比较。特别地,机器人的位置和运动精度也由第三方检测机构进行检测。实验和测试结果表明,采用本文提出的方法设计控制系统时,机器人的位置和速度精度得到显著提高,证明了所提方法的有效性。

2023-08-30

现代机器人YS080L机械臂SolidWorks模型

现代机器人YS080L机械臂SolidWorks模型,现代机器人YS080L负载:80Kg/臂展:2635mm,文件后缀STEP格式是一种ISO标准交换格式,可用于在CAD系统之间交换数据,例如CAD,计算机辅助制造,计算机辅助工程,产品数据管理EDM等。

2023-08-30

近年来中国企业年鉴.zip

近年来中国企业年鉴。毕业设计可用,可用参考引用。

2023-04-26

毕业设计之文献综述开题报告毕业论文写作模板.zip

毕业设计之文献综述开题报告毕业论文写作模板,偏文科和经济管理类。 1.90分以上:能较好地运用所学知识,论点正确,材料充实,叙述问题准确,论证严谨,语言精练,层次分明,结构完整,见解有所创新。 2.80分—89分:能运用所学知识,论点正确,材料充实,论证严谨,语言精练,层次清楚,在某一方面有所创新。 3.70分-79分:能运用所学知识,论点基本正确,材料尚充实,文字通顺,层次基本清楚,能较好地表达自己的正确见解。 4.60分-69分:能运用所学知识,论点基本正确,材料尚能说明问题,文字尚通顺,论证基本正确。 5.60分以下:对问题阐述不清楚,论点有错误,论据不准确,逻辑混乱,文字不通顺,不符合毕业论文的要求,基本抄袭或窃用他人成果。

2023-04-26

毕业设计等答辩PPT模板100套+

毕业设计等答辩PPT模板100套+,毕业设计,毕业答辩。本科生毕业设计,硕士研究生毕业设计,答辩PPT。

2023-04-26

英文文献基于遗传算法的工业机器人最优时间轨迹规划的译文

英文名字:Industrial_Robot_Optimal_Time_Trajectory_Planning_Based_on_Genetic_Algorithm的译文基于遗传算法的工业机器人最优时间轨迹规划,公式已经打出,表格可编辑。 本文提出了一种工业机器人的最优轨迹规划方法,该方法使用三次多项式曲线连接相邻路径点,从而使关节轨迹曲线更平滑。以安川六自由度工业机器人为例,利用MATLAB的遗传算法工具箱,确定了适应度函数和约束条件函数,得到了路径点之间的最短时间间隔。同时,6个关节的运行时间在相邻路径点之间同步。利用MATLAB对优化结果进行仿真,得到各关节运动学参数的变化曲线。仿真结果表明,各轴的轨迹曲线连续平滑,运动学参数满足约束,缩短了轨迹运行时间,提高了工作效率,为机器人控制奠定了基础。

2023-04-23

YOLOv7论文:可训练的免费包为实时物体检测器设置了新的最先进的技术

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors 本文的主要贡献如下: (1)设计了几种可训练的检测方法,使实时目标检测在不增加推理代价的情况下大大提高了检测精度; (2)对于目标检测方法的发展,作者发现了两个新的问题,即重参数化的模块如何取代原有的模块,以及动态标签分配策略如何处理对不同输出层的分配。此外,还提出了解决这些问题所带来的困难的方法; (3)提出了可有效利用参数和计算量的目标检测器扩展和复合缩放方法; (4)该方法可有效减少实时目标检测器40%左右的参数和50%的计算量,具有更快的推理速度和更高的检测精度。

2023-04-23

控制科学与工程保研面试资料汇总分享

控制科学与工程保研面试资料汇总分享,包括自动控制、单片机、模电基本知识点,自动控制面试问题汇总,还有一些个人陈述、自我介绍、推荐信的模板。

2023-03-16

城市轨道交通结课论文-《轨道交通上5G与车-车通信技术的研究》

摘要:轨道交通上的5G与车-车通信技术这项技术可以为轨道交通提供更快的数据传输速率、更大的连接设备数量、更低的延迟时间等优势,提升了轨道交通的安全性、效率和可靠性。然而,它也存在一些不足之处,例如5G通信设备的成本相对较高、目前5G网络的覆盖范围还较小、安全漏洞和数据泄露,以及频带资源使用、信号的区间切换和应用的开发等其它问题。针对以上这些问题本文分别给出了几点有效的解决方法,最后对该技术进行总结。 关键词:5G网络,轨道交通,车车通信 5G技术有潜力在提高铁路运输系统的效率和安全性方面发挥重要作用。5G的一个主要优点是它能够支持低延迟和高可靠性的连接,这对于实时监控和控制铁路车辆具有重要意义。通过使用5G网络,列车的位置和状态可以被铁路公司实时监测,并能够及时地采取措施来解决问题。5G还可以支持高清视频监控,为列车员提供更好的视野和更多信息,提高驾驶效率和安全性。同时,5G还可以支持多媒体应用,如高清视频和高音质音频,为乘客提供更好的服务。5G技术还能支持物联网(IoT)应用,如车辆传感器和物联网设备。这将有助于铁路公司监测和维护车辆和设备,提高运营效率和安全性。 5G与车-车通信技

2023-03-16

人工智能与自动驾驶结课论文+自动驾驶的传感器及数据融合

摘要:利用传感器采集数据,然后对不同数据源得到的数据进行融合,再把生成的数据输入神经网络等算法进行处理,最终的结果用于指导机器的动作。这是现代人工智能一般会采取的方式,可将其概括地分为感知层、控制层和执行层。自动驾驶是人工智能的一大应用领域,离不开这三层的相互配合。对于感知层,摄像头、雷达等传感器获取图像、距离、速度等信息,扮演眼睛、耳朵的角色。所以,研究自动驾驶感知层的设备和实现方式——传感器应用情况和数据融合算法——有着重要的意义。人工智能时代,智能传感器和基于AI的数据融合将成为主流。本文将着重在自动驾驶系统领域中,探讨传感器技术和数据融合算法的现状。 关键词:自动驾驶;传感器;融合算法;人工智能;

2023-03-16

卫星通信总复习题考试期末突击必备

卫星通信的定义是什么?卫星通信有何特点?卫星通信系统由那些部分组成?各部分的作用是什么?简述卫星通信中遥测、遥控和跟踪系统的组成及其功能。对时分多址系统实现初始捕获的方法有何要求? 时分多址系统初始捕获的本质是测距和瞄准,并在反馈过程中完成。对初始捕获的要求是速度快、精度高、设备简单。简述卫星通信中 QPSK、OQPSK、MSK 调制的基本概念及其相位变化特点。当要通过卫星传输多路电视信号,采用 SCPC 或 MCPC 方式传输的各有何 特点?试述 ALOHA 方式的几种主要改进方案。

2023-01-09

卫星通信总复习提纲,包含所有基本知识点

卫星通信总复习提纲,包含所有基本知识点。卫星通信的基本概念,特点。卫星通信系统和线路组成。地球站的组成,卫星通信地球站收发系统。卫星通信的基本原理。调制的分类,影响数字调制方式选择的主要原因。压扩技术:原理,框图。多址联接与多路复用的区别。信源编码,信道编码概念。DSI 基本原理。(提高话音效率,空闲信道利用)。等等等。。。。

2023-01-09

保研资料(自己收集的,富含多种资料,助力你上岸成功)

保研资料自己收集的,富含多种资料,助力你上岸成功

2022-08-23

上百套简历模板,几乎无条件赠送,适合求职,升学,全可编辑

上百套简历模板,几乎无条件赠送,适合求职,升学等。模板含有导航,方便查找。全文可编辑,助力你实现求职升学梦想。

2022-08-23

单端隔离型高频开关电源实验&隔离型桥式DCDC变换器实验

单端隔离型高频开关电源实验&隔离型桥式DCDC变换器实验报告,电力电子技术课程,可直接使用,高分实验报告

2022-08-17

微信小程序——停车位预约、可导航、可选位

微信小程序——停车位预约、可导航、可选位,界面精美,包含多个界面,可登录,可退出,可评价。云端存储信息,使用云函数。项目完善,可以根据自己需要进行编辑。

2022-08-09

使用电脑MATLAB获取手机传感器数据方法

使用电脑MATLAB获取手机传感器数据方法

2022-08-09

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除