04 _ 复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

本文详细讲解了复杂度分析中的最好情况、最坏情况、平均情况和均摊时间复杂度,通过实例分析了在不同情况下代码的时间复杂度,探讨了平均时间复杂度的计算及其与概率的关系,并引入了均摊时间复杂度的概念,以及如何通过摊还分析来理解和应用均摊时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里会继续讲四个复杂度分析方面的知识点,最好情况时间复杂度(best case time complexity)、最坏情况时间复杂度(worst case time complexity)、平均情况时间复杂度(average case time complexity)、均摊时间复杂度(amortized time complexity)。如果这几个概念你都能掌握,那对你来说,复杂度分析这部分内容就没什么大问题了。

最好、最坏情况时间复杂度

上一节我举的分析复杂度的例子都很简单,今天我们来看一个稍微复杂的。你可以用我上节教你的分析技巧,自己先试着分析一下这段代码的时间复杂度。

// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) pos = i;
  }
  return pos;
}

你应该可以看出来,这段代码要实现的功能是,在一个无序的数组(array)中,查找变量x出现的位置。如果没有找到,就返回-1。按照上节课讲的分析方法,这段代码的复杂度是O(n),其中,n代表数组的长度。

我们在数组中查找一个数据,并不需要每次都把整个数组都遍历一遍,因为有可能中途找到就可以提前结束循环了。但是,这段代码写得不够高效。我们可以这样优化一下这段查找代码。

// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

这个时候,问题就来了。我们优化完之后,这段代码的时间复杂度还是O(n)吗?很显然,咱们上一节讲的分析方法,解决不了这个问题。

因为,要查找的变量x可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量x,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值