31 _ 深度和广度优先搜索:如何找出社交网络中的三度好友关系?

本文介绍了如何使用深度优先搜索(DFS)和广度优先搜索(BFS)算法在社交网络中找出用户的一度、二度和三度好友关系。深度优先搜索基于回溯思想,适合递归实现,而广度优先搜索通过队列层层推进,找到最短路径。两者的时间复杂度均为O(E),空间复杂度为O(V)。
摘要由CSDN通过智能技术生成

上一节我们讲了图的表示方法,讲到如何用有向图、无向图来表示一个社交网络。在社交网络中,有一个六度分割理论,具体是说,你与世界上的另一个人间隔的关系不会超过六度,也就是说平均只需要六步就可以联系到任何两个互不相识的人。

一个用户的一度连接用户很好理解,就是他的好友,二度连接用户就是他好友的好友,三度连接用户就是他好友的好友的好友。在社交网络中,我们往往通过用户之间的连接关系,来实现推荐“可能认识的人”这么一个功能。今天的开篇问题就是,给你一个用户,如何找出这个用户的所有三度(其中包含一度、二度和三度)好友关系?

这就要用到今天要讲的深度优先和广度优先搜索算法。

什么是“搜索”算法?

我们知道,算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。这是因为,图这种数据结构的表达能力很强,大部分涉及搜索的场景都可以抽象成“图”。

图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。具体方法有很多,比如今天要讲的两种最简单、最“暴力”的深度优先、广度优先搜索,还有A*、IDA*等启发式搜索算法。

我们上一节讲过,图有两种主要存储方法,邻接表和邻接矩阵。今天我会用邻接表来存储图。

我这里先给出图的代码实现。需要说明一下,深度优先搜索算法和广度优先搜索算法,既可以用在无向图,也可以用在有向图上。在今天的讲解中,我都针对无向图来讲解。

public class Graph { // 无向图
  private int v; // 顶点的个数
  private LinkedList<Integer> adj[]; // 邻接表

  public Graph(int v) {
    this.v = v;
    adj = new LinkedList[v];
    for (int i=0; i<v; ++i) {
      adj[i] = new LinkedList<>();
    }
  }

  public void addEdge(int s, int t) { // 无向图一条边存两次
    adj[s].add(t);
    adj[t].add(s);
  }
}

广度优先搜索(BFS)

广度优先搜索(Breadth-First-Search),我们平常都简称BFS。直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的&#

  • 14
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值